\left\{ \begin{array} { l } { 3 ( x + 2 ) = 2 y } \\ { 2 c y + s = 7 x } \end{array} \right.
Whakaoti mō x, y (complex solution)
\left\{\begin{matrix}x=-\frac{s+6c}{3c-7}\text{, }y=-\frac{3\left(s+14\right)}{2\left(3c-7\right)}\text{, }&c\neq \frac{7}{3}\\x=\frac{2\left(y-3\right)}{3}\text{, }y\in \mathrm{C}\text{, }&c=\frac{7}{3}\text{ and }s=-14\end{matrix}\right.
Whakaoti mō x, y
\left\{\begin{matrix}x=-\frac{s+6c}{3c-7}\text{, }y=-\frac{3\left(s+14\right)}{2\left(3c-7\right)}\text{, }&c\neq \frac{7}{3}\\x=\frac{2\left(y-3\right)}{3}\text{, }y\in \mathrm{R}\text{, }&c=\frac{7}{3}\text{ and }s=-14\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+6=2y
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+2.
3x+6-2y=0
Tangohia te 2y mai i ngā taha e rua.
3x-2y=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2cy+s-7x=0
Whakaarohia te whārite tuarua. Tangohia te 7x mai i ngā taha e rua.
2cy-7x=-s
Tangohia te s mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3x-2y=-6,-7x+2cy=-s
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-2y=-6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=2y-6
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(2y-6\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{2}{3}y-2
Whakareatia \frac{1}{3} ki te -6+2y.
-7\left(\frac{2}{3}y-2\right)+2cy=-s
Whakakapia te \frac{2y}{3}-2 mō te x ki tērā atu whārite, -7x+2cy=-s.
-\frac{14}{3}y+14+2cy=-s
Whakareatia -7 ki te \frac{2y}{3}-2.
\left(2c-\frac{14}{3}\right)y+14=-s
Tāpiri -\frac{14y}{3} ki te 2cy.
\left(2c-\frac{14}{3}\right)y=-s-14
Me tango 14 mai i ngā taha e rua o te whārite.
y=-\frac{3\left(s+14\right)}{2\left(3c-7\right)}
Whakawehea ngā taha e rua ki te -\frac{14}{3}+2c.
x=\frac{2}{3}\left(-\frac{3\left(s+14\right)}{2\left(3c-7\right)}\right)-2
Whakaurua te -\frac{3\left(s+14\right)}{2\left(-7+3c\right)} mō y ki x=\frac{2}{3}y-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{s+14}{3c-7}-2
Whakareatia \frac{2}{3} ki te -\frac{3\left(s+14\right)}{2\left(-7+3c\right)}.
x=-\frac{s+6c}{3c-7}
Tāpiri -2 ki te -\frac{s+14}{-7+3c}.
x=-\frac{s+6c}{3c-7},y=-\frac{3\left(s+14\right)}{2\left(3c-7\right)}
Kua oti te pūnaha te whakatau.
3x+6=2y
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+2.
3x+6-2y=0
Tangohia te 2y mai i ngā taha e rua.
3x-2y=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2cy+s-7x=0
Whakaarohia te whārite tuarua. Tangohia te 7x mai i ngā taha e rua.
2cy-7x=-s
Tangohia te s mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3x-2y=-6,-7x+2cy=-s
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-s\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}-6\\-s\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}-6\\-s\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}-6\\-s\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2c}{3\times 2c-\left(-2\left(-7\right)\right)}&-\frac{-2}{3\times 2c-\left(-2\left(-7\right)\right)}\\-\frac{-7}{3\times 2c-\left(-2\left(-7\right)\right)}&\frac{3}{3\times 2c-\left(-2\left(-7\right)\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-s\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{c}{3c-7}&\frac{1}{3c-7}\\\frac{7}{2\left(3c-7\right)}&\frac{3}{2\left(3c-7\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-s\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{c}{3c-7}\left(-6\right)+\frac{1}{3c-7}\left(-s\right)\\\frac{7}{2\left(3c-7\right)}\left(-6\right)+\frac{3}{2\left(3c-7\right)}\left(-s\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{s+6c}{3c-7}\\-\frac{3\left(s+14\right)}{2\left(3c-7\right)}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{s+6c}{3c-7},y=-\frac{3\left(s+14\right)}{2\left(3c-7\right)}
Tangohia ngā huānga poukapa x me y.
3x+6=2y
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+2.
3x+6-2y=0
Tangohia te 2y mai i ngā taha e rua.
3x-2y=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2cy+s-7x=0
Whakaarohia te whārite tuarua. Tangohia te 7x mai i ngā taha e rua.
2cy-7x=-s
Tangohia te s mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3x-2y=-6,-7x+2cy=-s
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-7\times 3x-7\left(-2\right)y=-7\left(-6\right),3\left(-7\right)x+3\times 2cy=3\left(-s\right)
Kia ōrite ai a 3x me -7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-21x+14y=42,-21x+6cy=-3s
Whakarūnātia.
-21x+21x+14y+\left(-6c\right)y=42+3s
Me tango -21x+6cy=-3s mai i -21x+14y=42 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
14y+\left(-6c\right)y=42+3s
Tāpiri -21x ki te 21x. Ka whakakore atu ngā kupu -21x me 21x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(14-6c\right)y=42+3s
Tāpiri 14y ki te -6cy.
\left(14-6c\right)y=3s+42
Tāpiri 42 ki te 3s.
y=\frac{3\left(s+14\right)}{2\left(7-3c\right)}
Whakawehea ngā taha e rua ki te 14-6c.
-7x+2c\times \frac{3\left(s+14\right)}{2\left(7-3c\right)}=-s
Whakaurua te \frac{3\left(14+s\right)}{2\left(7-3c\right)} mō y ki -7x+2cy=-s. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-7x+\frac{3c\left(s+14\right)}{7-3c}=-s
Whakareatia 2c ki te \frac{3\left(14+s\right)}{2\left(7-3c\right)}.
-7x=-\frac{7\left(s+6c\right)}{7-3c}
Me tango \frac{3c\left(14+s\right)}{7-3c} mai i ngā taha e rua o te whārite.
x=\frac{s+6c}{7-3c}
Whakawehea ngā taha e rua ki te -7.
x=\frac{s+6c}{7-3c},y=\frac{3\left(s+14\right)}{2\left(7-3c\right)}
Kua oti te pūnaha te whakatau.
3x+6=2y
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+2.
3x+6-2y=0
Tangohia te 2y mai i ngā taha e rua.
3x-2y=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2cy+s-7x=0
Whakaarohia te whārite tuarua. Tangohia te 7x mai i ngā taha e rua.
2cy-7x=-s
Tangohia te s mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3x-2y=-6,-7x+2cy=-s
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-2y=-6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=2y-6
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(2y-6\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{2}{3}y-2
Whakareatia \frac{1}{3} ki te -6+2y.
-7\left(\frac{2}{3}y-2\right)+2cy=-s
Whakakapia te \frac{2y}{3}-2 mō te x ki tērā atu whārite, -7x+2cy=-s.
-\frac{14}{3}y+14+2cy=-s
Whakareatia -7 ki te \frac{2y}{3}-2.
\left(2c-\frac{14}{3}\right)y+14=-s
Tāpiri -\frac{14y}{3} ki te 2cy.
\left(2c-\frac{14}{3}\right)y=-s-14
Me tango 14 mai i ngā taha e rua o te whārite.
y=-\frac{3\left(s+14\right)}{2\left(3c-7\right)}
Whakawehea ngā taha e rua ki te -\frac{14}{3}+2c.
x=\frac{2}{3}\left(-\frac{3\left(s+14\right)}{2\left(3c-7\right)}\right)-2
Whakaurua te -\frac{3\left(s+14\right)}{2\left(-7+3c\right)} mō y ki x=\frac{2}{3}y-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{s+14}{3c-7}-2
Whakareatia \frac{2}{3} ki te -\frac{3\left(s+14\right)}{2\left(-7+3c\right)}.
x=-\frac{s+6c}{3c-7}
Tāpiri -2 ki te -\frac{s+14}{-7+3c}.
x=-\frac{s+6c}{3c-7},y=-\frac{3\left(s+14\right)}{2\left(3c-7\right)}
Kua oti te pūnaha te whakatau.
3x+6=2y
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+2.
3x+6-2y=0
Tangohia te 2y mai i ngā taha e rua.
3x-2y=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2cy+s-7x=0
Whakaarohia te whārite tuarua. Tangohia te 7x mai i ngā taha e rua.
2cy-7x=-s
Tangohia te s mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3x-2y=-6,-7x+2cy=-s
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-s\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}-6\\-s\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}-6\\-s\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-7&2c\end{matrix}\right))\left(\begin{matrix}-6\\-s\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2c}{3\times 2c-\left(-2\left(-7\right)\right)}&-\frac{-2}{3\times 2c-\left(-2\left(-7\right)\right)}\\-\frac{-7}{3\times 2c-\left(-2\left(-7\right)\right)}&\frac{3}{3\times 2c-\left(-2\left(-7\right)\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-s\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{c}{3c-7}&\frac{1}{3c-7}\\\frac{7}{2\left(3c-7\right)}&\frac{3}{2\left(3c-7\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-s\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{c}{3c-7}\left(-6\right)+\frac{1}{3c-7}\left(-s\right)\\\frac{7}{2\left(3c-7\right)}\left(-6\right)+\frac{3}{2\left(3c-7\right)}\left(-s\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{s+6c}{3c-7}\\-\frac{3\left(s+14\right)}{2\left(3c-7\right)}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{s+6c}{3c-7},y=-\frac{3\left(s+14\right)}{2\left(3c-7\right)}
Tangohia ngā huānga poukapa x me y.
3x+6=2y
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+2.
3x+6-2y=0
Tangohia te 2y mai i ngā taha e rua.
3x-2y=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2cy+s-7x=0
Whakaarohia te whārite tuarua. Tangohia te 7x mai i ngā taha e rua.
2cy-7x=-s
Tangohia te s mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3x-2y=-6,-7x+2cy=-s
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-7\times 3x-7\left(-2\right)y=-7\left(-6\right),3\left(-7\right)x+3\times 2cy=3\left(-s\right)
Kia ōrite ai a 3x me -7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-21x+14y=42,-21x+6cy=-3s
Whakarūnātia.
-21x+21x+14y+\left(-6c\right)y=42+3s
Me tango -21x+6cy=-3s mai i -21x+14y=42 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
14y+\left(-6c\right)y=42+3s
Tāpiri -21x ki te 21x. Ka whakakore atu ngā kupu -21x me 21x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(14-6c\right)y=42+3s
Tāpiri 14y ki te -6cy.
\left(14-6c\right)y=3s+42
Tāpiri 42 ki te 3s.
y=\frac{3\left(s+14\right)}{2\left(7-3c\right)}
Whakawehea ngā taha e rua ki te 14-6c.
-7x+2c\times \frac{3\left(s+14\right)}{2\left(7-3c\right)}=-s
Whakaurua te \frac{3\left(14+s\right)}{2\left(7-3c\right)} mō y ki -7x+2cy=-s. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-7x+\frac{3c\left(s+14\right)}{7-3c}=-s
Whakareatia 2c ki te \frac{3\left(14+s\right)}{2\left(7-3c\right)}.
-7x=-\frac{7\left(s+6c\right)}{7-3c}
Me tango \frac{3c\left(14+s\right)}{7-3c} mai i ngā taha e rua o te whārite.
x=\frac{s+6c}{7-3c}
Whakawehea ngā taha e rua ki te -7.
x=\frac{s+6c}{7-3c},y=\frac{3\left(s+14\right)}{2\left(7-3c\right)}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}