\left\{ \begin{array} { l } { 3 ( 5 x - 2 ) - 7 ( 2 y + 3 ) = 2 } \\ { 2 ( 3 x - y ) - 23 = 3 ( 4 - 9 x ) } \end{array} \right.
Whakaoti mō x, y
x=1
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
15x-6-7\left(2y+3\right)=2
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 5x-2.
15x-6-14y-21=2
Whakamahia te āhuatanga tohatoha hei whakarea te -7 ki te 2y+3.
15x-27-14y=2
Tangohia te 21 i te -6, ka -27.
15x-14y=2+27
Me tāpiri te 27 ki ngā taha e rua.
15x-14y=29
Tāpirihia te 2 ki te 27, ka 29.
6x-2y-23=3\left(4-9x\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x-y.
6x-2y-23=12-27x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4-9x.
6x-2y-23+27x=12
Me tāpiri te 27x ki ngā taha e rua.
33x-2y-23=12
Pahekotia te 6x me 27x, ka 33x.
33x-2y=12+23
Me tāpiri te 23 ki ngā taha e rua.
33x-2y=35
Tāpirihia te 12 ki te 23, ka 35.
15x-14y=29,33x-2y=35
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
15x-14y=29
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
15x=14y+29
Me tāpiri 14y ki ngā taha e rua o te whārite.
x=\frac{1}{15}\left(14y+29\right)
Whakawehea ngā taha e rua ki te 15.
x=\frac{14}{15}y+\frac{29}{15}
Whakareatia \frac{1}{15} ki te 14y+29.
33\left(\frac{14}{15}y+\frac{29}{15}\right)-2y=35
Whakakapia te \frac{14y+29}{15} mō te x ki tērā atu whārite, 33x-2y=35.
\frac{154}{5}y+\frac{319}{5}-2y=35
Whakareatia 33 ki te \frac{14y+29}{15}.
\frac{144}{5}y+\frac{319}{5}=35
Tāpiri \frac{154y}{5} ki te -2y.
\frac{144}{5}y=-\frac{144}{5}
Me tango \frac{319}{5} mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te \frac{144}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{14}{15}\left(-1\right)+\frac{29}{15}
Whakaurua te -1 mō y ki x=\frac{14}{15}y+\frac{29}{15}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-14+29}{15}
Whakareatia \frac{14}{15} ki te -1.
x=1
Tāpiri \frac{29}{15} ki te -\frac{14}{15} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-1
Kua oti te pūnaha te whakatau.
15x-6-7\left(2y+3\right)=2
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 5x-2.
15x-6-14y-21=2
Whakamahia te āhuatanga tohatoha hei whakarea te -7 ki te 2y+3.
15x-27-14y=2
Tangohia te 21 i te -6, ka -27.
15x-14y=2+27
Me tāpiri te 27 ki ngā taha e rua.
15x-14y=29
Tāpirihia te 2 ki te 27, ka 29.
6x-2y-23=3\left(4-9x\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x-y.
6x-2y-23=12-27x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4-9x.
6x-2y-23+27x=12
Me tāpiri te 27x ki ngā taha e rua.
33x-2y-23=12
Pahekotia te 6x me 27x, ka 33x.
33x-2y=12+23
Me tāpiri te 23 ki ngā taha e rua.
33x-2y=35
Tāpirihia te 12 ki te 23, ka 35.
15x-14y=29,33x-2y=35
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}15&-14\\33&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}29\\35\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}15&-14\\33&-2\end{matrix}\right))\left(\begin{matrix}15&-14\\33&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&-14\\33&-2\end{matrix}\right))\left(\begin{matrix}29\\35\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}15&-14\\33&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&-14\\33&-2\end{matrix}\right))\left(\begin{matrix}29\\35\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&-14\\33&-2\end{matrix}\right))\left(\begin{matrix}29\\35\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{15\left(-2\right)-\left(-14\times 33\right)}&-\frac{-14}{15\left(-2\right)-\left(-14\times 33\right)}\\-\frac{33}{15\left(-2\right)-\left(-14\times 33\right)}&\frac{15}{15\left(-2\right)-\left(-14\times 33\right)}\end{matrix}\right)\left(\begin{matrix}29\\35\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{216}&\frac{7}{216}\\-\frac{11}{144}&\frac{5}{144}\end{matrix}\right)\left(\begin{matrix}29\\35\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{216}\times 29+\frac{7}{216}\times 35\\-\frac{11}{144}\times 29+\frac{5}{144}\times 35\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-1
Tangohia ngā huānga poukapa x me y.
15x-6-7\left(2y+3\right)=2
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 5x-2.
15x-6-14y-21=2
Whakamahia te āhuatanga tohatoha hei whakarea te -7 ki te 2y+3.
15x-27-14y=2
Tangohia te 21 i te -6, ka -27.
15x-14y=2+27
Me tāpiri te 27 ki ngā taha e rua.
15x-14y=29
Tāpirihia te 2 ki te 27, ka 29.
6x-2y-23=3\left(4-9x\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x-y.
6x-2y-23=12-27x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4-9x.
6x-2y-23+27x=12
Me tāpiri te 27x ki ngā taha e rua.
33x-2y-23=12
Pahekotia te 6x me 27x, ka 33x.
33x-2y=12+23
Me tāpiri te 23 ki ngā taha e rua.
33x-2y=35
Tāpirihia te 12 ki te 23, ka 35.
15x-14y=29,33x-2y=35
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
33\times 15x+33\left(-14\right)y=33\times 29,15\times 33x+15\left(-2\right)y=15\times 35
Kia ōrite ai a 15x me 33x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 33 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 15.
495x-462y=957,495x-30y=525
Whakarūnātia.
495x-495x-462y+30y=957-525
Me tango 495x-30y=525 mai i 495x-462y=957 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-462y+30y=957-525
Tāpiri 495x ki te -495x. Ka whakakore atu ngā kupu 495x me -495x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-432y=957-525
Tāpiri -462y ki te 30y.
-432y=432
Tāpiri 957 ki te -525.
y=-1
Whakawehea ngā taha e rua ki te -432.
33x-2\left(-1\right)=35
Whakaurua te -1 mō y ki 33x-2y=35. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
33x+2=35
Whakareatia -2 ki te -1.
33x=33
Me tango 2 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 33.
x=1,y=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}