Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(2x+1\right)-5\left(y-3\right)=1,5\left(-x+1\right)-4\left(2y+1\right)=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3\left(2x+1\right)-5\left(y-3\right)=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x+3-5\left(y-3\right)=1
Whakareatia 3 ki te 2x+1.
6x+3-5y+15=1
Whakareatia -5 ki te y-3.
6x-5y+18=1
Tāpiri 3 ki te 15.
6x-5y=-17
Me tango 18 mai i ngā taha e rua o te whārite.
6x=5y-17
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{6}\left(5y-17\right)
Whakawehea ngā taha e rua ki te 6.
x=\frac{5}{6}y-\frac{17}{6}
Whakareatia \frac{1}{6} ki te 5y-17.
5\left(-\left(\frac{5}{6}y-\frac{17}{6}\right)+1\right)-4\left(2y+1\right)=3
Whakakapia te \frac{5y-17}{6} mō te x ki tērā atu whārite, 5\left(-x+1\right)-4\left(2y+1\right)=3.
5\left(-\frac{5}{6}y+\frac{17}{6}+1\right)-4\left(2y+1\right)=3
Whakareatia -1 ki te \frac{5y-17}{6}.
5\left(-\frac{5}{6}y+\frac{23}{6}\right)-4\left(2y+1\right)=3
Tāpiri \frac{17}{6} ki te 1.
-\frac{25}{6}y+\frac{115}{6}-4\left(2y+1\right)=3
Whakareatia 5 ki te \frac{-5y+23}{6}.
-\frac{25}{6}y+\frac{115}{6}-8y-4=3
Whakareatia -4 ki te 2y+1.
-\frac{73}{6}y+\frac{115}{6}-4=3
Tāpiri -\frac{25y}{6} ki te -8y.
-\frac{73}{6}y+\frac{91}{6}=3
Tāpiri \frac{115}{6} ki te -4.
-\frac{73}{6}y=-\frac{73}{6}
Me tango \frac{91}{6} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{73}{6}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5-17}{6}
Whakaurua te 1 mō y ki x=\frac{5}{6}y-\frac{17}{6}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2
Tāpiri -\frac{17}{6} ki te \frac{5}{6} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-2,y=1
Kua oti te pūnaha te whakatau.
3\left(2x+1\right)-5\left(y-3\right)=1,5\left(-x+1\right)-4\left(2y+1\right)=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
3\left(2x+1\right)-5\left(y-3\right)=1
Whakarūnātia te whārite tuatahi ki te āhua tānga ngahuru.
6x+3-5\left(y-3\right)=1
Whakareatia 3 ki te 2x+1.
6x+3-5y+15=1
Whakareatia -5 ki te y-3.
6x-5y+18=1
Tāpiri 3 ki te 15.
6x-5y=-17
Me tango 18 mai i ngā taha e rua o te whārite.
5\left(-x+1\right)-4\left(2y+1\right)=3
Whakarūnātia te whārite tuarua ki te āhua tānga ngahuru.
-5x+5-4\left(2y+1\right)=3
Whakareatia 5 ki te -x+1.
-5x+5-8y-4=3
Whakareatia -4 ki te 2y+1.
-5x-8y+1=3
Tāpiri 5 ki te -4.
-5x-8y=2
Me tango 1 mai i ngā taha e rua o te whārite.
\left(\begin{matrix}6&-5\\-5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-17\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&-5\\-5&-8\end{matrix}\right))\left(\begin{matrix}6&-5\\-5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-5&-8\end{matrix}\right))\left(\begin{matrix}-17\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&-5\\-5&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-5&-8\end{matrix}\right))\left(\begin{matrix}-17\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-5&-8\end{matrix}\right))\left(\begin{matrix}-17\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{6\left(-8\right)-\left(-5\left(-5\right)\right)}&-\frac{-5}{6\left(-8\right)-\left(-5\left(-5\right)\right)}\\-\frac{-5}{6\left(-8\right)-\left(-5\left(-5\right)\right)}&\frac{6}{6\left(-8\right)-\left(-5\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}-17\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{73}&-\frac{5}{73}\\-\frac{5}{73}&-\frac{6}{73}\end{matrix}\right)\left(\begin{matrix}-17\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{73}\left(-17\right)-\frac{5}{73}\times 2\\-\frac{5}{73}\left(-17\right)-\frac{6}{73}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=1
Tangohia ngā huānga poukapa x me y.