Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

220x+100y+108=352,220x+600y+108=316
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
220x+100y+108=352
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
220x+100y=244
Me tango 108 mai i ngā taha e rua o te whārite.
220x=-100y+244
Me tango 100y mai i ngā taha e rua o te whārite.
x=\frac{1}{220}\left(-100y+244\right)
Whakawehea ngā taha e rua ki te 220.
x=-\frac{5}{11}y+\frac{61}{55}
Whakareatia \frac{1}{220} ki te -100y+244.
220\left(-\frac{5}{11}y+\frac{61}{55}\right)+600y+108=316
Whakakapia te -\frac{5y}{11}+\frac{61}{55} mō te x ki tērā atu whārite, 220x+600y+108=316.
-100y+244+600y+108=316
Whakareatia 220 ki te -\frac{5y}{11}+\frac{61}{55}.
500y+244+108=316
Tāpiri -100y ki te 600y.
500y+352=316
Tāpiri 244 ki te 108.
500y=-36
Me tango 352 mai i ngā taha e rua o te whārite.
y=-\frac{9}{125}
Whakawehea ngā taha e rua ki te 500.
x=-\frac{5}{11}\left(-\frac{9}{125}\right)+\frac{61}{55}
Whakaurua te -\frac{9}{125} mō y ki x=-\frac{5}{11}y+\frac{61}{55}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{9}{275}+\frac{61}{55}
Whakareatia -\frac{5}{11} ki te -\frac{9}{125} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{314}{275}
Tāpiri \frac{61}{55} ki te \frac{9}{275} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{314}{275},y=-\frac{9}{125}
Kua oti te pūnaha te whakatau.
220x+100y+108=352,220x+600y+108=316
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}220&100\\220&600\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}244\\208\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}220&100\\220&600\end{matrix}\right))\left(\begin{matrix}220&100\\220&600\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}220&100\\220&600\end{matrix}\right))\left(\begin{matrix}244\\208\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}220&100\\220&600\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}220&100\\220&600\end{matrix}\right))\left(\begin{matrix}244\\208\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}220&100\\220&600\end{matrix}\right))\left(\begin{matrix}244\\208\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{600}{220\times 600-100\times 220}&-\frac{100}{220\times 600-100\times 220}\\-\frac{220}{220\times 600-100\times 220}&\frac{220}{220\times 600-100\times 220}\end{matrix}\right)\left(\begin{matrix}244\\208\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{550}&-\frac{1}{1100}\\-\frac{1}{500}&\frac{1}{500}\end{matrix}\right)\left(\begin{matrix}244\\208\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{550}\times 244-\frac{1}{1100}\times 208\\-\frac{1}{500}\times 244+\frac{1}{500}\times 208\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{314}{275}\\-\frac{9}{125}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{314}{275},y=-\frac{9}{125}
Tangohia ngā huānga poukapa x me y.
220x+100y+108=352,220x+600y+108=316
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
220x-220x+100y-600y+108-108=352-316
Me tango 220x+600y+108=316 mai i 220x+100y+108=352 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
100y-600y+108-108=352-316
Tāpiri 220x ki te -220x. Ka whakakore atu ngā kupu 220x me -220x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-500y+108-108=352-316
Tāpiri 100y ki te -600y.
-500y=352-316
Tāpiri 108 ki te -108.
-500y=36
Tāpiri 352 ki te -316.
y=-\frac{9}{125}
Whakawehea ngā taha e rua ki te -500.
220x+600\left(-\frac{9}{125}\right)+108=316
Whakaurua te -\frac{9}{125} mō y ki 220x+600y+108=316. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
220x-\frac{216}{5}+108=316
Whakareatia 600 ki te -\frac{9}{125}.
220x+\frac{324}{5}=316
Tāpiri -\frac{216}{5} ki te 108.
220x=\frac{1256}{5}
Me tango \frac{324}{5} mai i ngā taha e rua o te whārite.
x=\frac{314}{275}
Whakawehea ngā taha e rua ki te 220.
x=\frac{314}{275},y=-\frac{9}{125}
Kua oti te pūnaha te whakatau.