\left\{ \begin{array} { l } { 21 x + 7 y = 42 } \\ { - 5 x + 5 y = 10 } \end{array} \right.
Whakaoti mō x, y
x=1
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
21x+7y=42,-5x+5y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
21x+7y=42
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
21x=-7y+42
Me tango 7y mai i ngā taha e rua o te whārite.
x=\frac{1}{21}\left(-7y+42\right)
Whakawehea ngā taha e rua ki te 21.
x=-\frac{1}{3}y+2
Whakareatia \frac{1}{21} ki te -7y+42.
-5\left(-\frac{1}{3}y+2\right)+5y=10
Whakakapia te -\frac{y}{3}+2 mō te x ki tērā atu whārite, -5x+5y=10.
\frac{5}{3}y-10+5y=10
Whakareatia -5 ki te -\frac{y}{3}+2.
\frac{20}{3}y-10=10
Tāpiri \frac{5y}{3} ki te 5y.
\frac{20}{3}y=20
Me tāpiri 10 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{20}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{3}\times 3+2
Whakaurua te 3 mō y ki x=-\frac{1}{3}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1+2
Whakareatia -\frac{1}{3} ki te 3.
x=1
Tāpiri 2 ki te -1.
x=1,y=3
Kua oti te pūnaha te whakatau.
21x+7y=42,-5x+5y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}21&7\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}42\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}21&7\\-5&5\end{matrix}\right))\left(\begin{matrix}21&7\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}21&7\\-5&5\end{matrix}\right))\left(\begin{matrix}42\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}21&7\\-5&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}21&7\\-5&5\end{matrix}\right))\left(\begin{matrix}42\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}21&7\\-5&5\end{matrix}\right))\left(\begin{matrix}42\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21\times 5-7\left(-5\right)}&-\frac{7}{21\times 5-7\left(-5\right)}\\-\frac{-5}{21\times 5-7\left(-5\right)}&\frac{21}{21\times 5-7\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}42\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{28}&-\frac{1}{20}\\\frac{1}{28}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}42\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{28}\times 42-\frac{1}{20}\times 10\\\frac{1}{28}\times 42+\frac{3}{20}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=3
Tangohia ngā huānga poukapa x me y.
21x+7y=42,-5x+5y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\times 21x-5\times 7y=-5\times 42,21\left(-5\right)x+21\times 5y=21\times 10
Kia ōrite ai a 21x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 21.
-105x-35y=-210,-105x+105y=210
Whakarūnātia.
-105x+105x-35y-105y=-210-210
Me tango -105x+105y=210 mai i -105x-35y=-210 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-35y-105y=-210-210
Tāpiri -105x ki te 105x. Ka whakakore atu ngā kupu -105x me 105x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-140y=-210-210
Tāpiri -35y ki te -105y.
-140y=-420
Tāpiri -210 ki te -210.
y=3
Whakawehea ngā taha e rua ki te -140.
-5x+5\times 3=10
Whakaurua te 3 mō y ki -5x+5y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x+15=10
Whakareatia 5 ki te 3.
-5x=-5
Me tango 15 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -5.
x=1,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}