\left\{ \begin{array} { l } { 20 - 7600 x - 1600 y = 0 } \\ { 20 - 1000 x - 6000 y = 0 } \end{array} \right.
Whakaoti mō x, y
x=\frac{1}{500}=0.002
y=\frac{3}{1000}=0.003
Graph
Tohaina
Kua tāruatia ki te papatopenga
-7600x-1600y+20=0,-1000x-6000y+20=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-7600x-1600y+20=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-7600x-1600y=-20
Me tango 20 mai i ngā taha e rua o te whārite.
-7600x=1600y-20
Me tāpiri 1600y ki ngā taha e rua o te whārite.
x=-\frac{1}{7600}\left(1600y-20\right)
Whakawehea ngā taha e rua ki te -7600.
x=-\frac{4}{19}y+\frac{1}{380}
Whakareatia -\frac{1}{7600} ki te 1600y-20.
-1000\left(-\frac{4}{19}y+\frac{1}{380}\right)-6000y+20=0
Whakakapia te -\frac{4y}{19}+\frac{1}{380} mō te x ki tērā atu whārite, -1000x-6000y+20=0.
\frac{4000}{19}y-\frac{50}{19}-6000y+20=0
Whakareatia -1000 ki te -\frac{4y}{19}+\frac{1}{380}.
-\frac{110000}{19}y-\frac{50}{19}+20=0
Tāpiri \frac{4000y}{19} ki te -6000y.
-\frac{110000}{19}y+\frac{330}{19}=0
Tāpiri -\frac{50}{19} ki te 20.
-\frac{110000}{19}y=-\frac{330}{19}
Me tango \frac{330}{19} mai i ngā taha e rua o te whārite.
y=\frac{3}{1000}
Whakawehea ngā taha e rua o te whārite ki te -\frac{110000}{19}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{4}{19}\times \frac{3}{1000}+\frac{1}{380}
Whakaurua te \frac{3}{1000} mō y ki x=-\frac{4}{19}y+\frac{1}{380}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{3}{4750}+\frac{1}{380}
Whakareatia -\frac{4}{19} ki te \frac{3}{1000} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{500}
Tāpiri \frac{1}{380} ki te -\frac{3}{4750} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{500},y=\frac{3}{1000}
Kua oti te pūnaha te whakatau.
-7600x-1600y+20=0,-1000x-6000y+20=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-7600&-1600\\-1000&-6000\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-20\\-20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-7600&-1600\\-1000&-6000\end{matrix}\right))\left(\begin{matrix}-7600&-1600\\-1000&-6000\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7600&-1600\\-1000&-6000\end{matrix}\right))\left(\begin{matrix}-20\\-20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-7600&-1600\\-1000&-6000\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7600&-1600\\-1000&-6000\end{matrix}\right))\left(\begin{matrix}-20\\-20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7600&-1600\\-1000&-6000\end{matrix}\right))\left(\begin{matrix}-20\\-20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6000}{-7600\left(-6000\right)-\left(-1600\left(-1000\right)\right)}&-\frac{-1600}{-7600\left(-6000\right)-\left(-1600\left(-1000\right)\right)}\\-\frac{-1000}{-7600\left(-6000\right)-\left(-1600\left(-1000\right)\right)}&-\frac{7600}{-7600\left(-6000\right)-\left(-1600\left(-1000\right)\right)}\end{matrix}\right)\left(\begin{matrix}-20\\-20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{22000}&\frac{1}{27500}\\\frac{1}{44000}&-\frac{19}{110000}\end{matrix}\right)\left(\begin{matrix}-20\\-20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{22000}\left(-20\right)+\frac{1}{27500}\left(-20\right)\\\frac{1}{44000}\left(-20\right)-\frac{19}{110000}\left(-20\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{500}\\\frac{3}{1000}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{500},y=\frac{3}{1000}
Tangohia ngā huānga poukapa x me y.
-7600x-1600y+20=0,-1000x-6000y+20=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-1000\left(-7600\right)x-1000\left(-1600\right)y-1000\times 20=0,-7600\left(-1000\right)x-7600\left(-6000\right)y-7600\times 20=0
Kia ōrite ai a -7600x me -1000x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1000 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -7600.
7600000x+1600000y-20000=0,7600000x+45600000y-152000=0
Whakarūnātia.
7600000x-7600000x+1600000y-45600000y-20000+152000=0
Me tango 7600000x+45600000y-152000=0 mai i 7600000x+1600000y-20000=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
1600000y-45600000y-20000+152000=0
Tāpiri 7600000x ki te -7600000x. Ka whakakore atu ngā kupu 7600000x me -7600000x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-44000000y-20000+152000=0
Tāpiri 1600000y ki te -45600000y.
-44000000y+132000=0
Tāpiri -20000 ki te 152000.
-44000000y=-132000
Me tango 132000 mai i ngā taha e rua o te whārite.
y=\frac{3}{1000}
Whakawehea ngā taha e rua ki te -44000000.
-1000x-6000\times \frac{3}{1000}+20=0
Whakaurua te \frac{3}{1000} mō y ki -1000x-6000y+20=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-1000x-18+20=0
Whakareatia -6000 ki te \frac{3}{1000}.
-1000x+2=0
Tāpiri -18 ki te 20.
-1000x=-2
Me tango 2 mai i ngā taha e rua o te whārite.
x=\frac{1}{500}
Whakawehea ngā taha e rua ki te -1000.
x=\frac{1}{500},y=\frac{3}{1000}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}