\left\{ \begin{array} { l } { 20 + x + y = 115 } \\ { 11 x = 8 y } \end{array} \right.
Whakaoti mō x, y
x=40
y=55
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=115-20
Whakaarohia te whārite tuatahi. Tangohia te 20 mai i ngā taha e rua.
x+y=95
Tangohia te 20 i te 115, ka 95.
11x-8y=0
Whakaarohia te whārite tuarua. Tangohia te 8y mai i ngā taha e rua.
x+y=95,11x-8y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=95
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+95
Me tango y mai i ngā taha e rua o te whārite.
11\left(-y+95\right)-8y=0
Whakakapia te -y+95 mō te x ki tērā atu whārite, 11x-8y=0.
-11y+1045-8y=0
Whakareatia 11 ki te -y+95.
-19y+1045=0
Tāpiri -11y ki te -8y.
-19y=-1045
Me tango 1045 mai i ngā taha e rua o te whārite.
y=55
Whakawehea ngā taha e rua ki te -19.
x=-55+95
Whakaurua te 55 mō y ki x=-y+95. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=40
Tāpiri 95 ki te -55.
x=40,y=55
Kua oti te pūnaha te whakatau.
x+y=115-20
Whakaarohia te whārite tuatahi. Tangohia te 20 mai i ngā taha e rua.
x+y=95
Tangohia te 20 i te 115, ka 95.
11x-8y=0
Whakaarohia te whārite tuarua. Tangohia te 8y mai i ngā taha e rua.
x+y=95,11x-8y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\11&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}95\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\11&-8\end{matrix}\right))\left(\begin{matrix}1&1\\11&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\11&-8\end{matrix}\right))\left(\begin{matrix}95\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\11&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\11&-8\end{matrix}\right))\left(\begin{matrix}95\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\11&-8\end{matrix}\right))\left(\begin{matrix}95\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-8-11}&-\frac{1}{-8-11}\\-\frac{11}{-8-11}&\frac{1}{-8-11}\end{matrix}\right)\left(\begin{matrix}95\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{19}&\frac{1}{19}\\\frac{11}{19}&-\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}95\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{19}\times 95\\\frac{11}{19}\times 95\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\55\end{matrix}\right)
Mahia ngā tātaitanga.
x=40,y=55
Tangohia ngā huānga poukapa x me y.
x+y=115-20
Whakaarohia te whārite tuatahi. Tangohia te 20 mai i ngā taha e rua.
x+y=95
Tangohia te 20 i te 115, ka 95.
11x-8y=0
Whakaarohia te whārite tuarua. Tangohia te 8y mai i ngā taha e rua.
x+y=95,11x-8y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
11x+11y=11\times 95,11x-8y=0
Kia ōrite ai a x me 11x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 11 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
11x+11y=1045,11x-8y=0
Whakarūnātia.
11x-11x+11y+8y=1045
Me tango 11x-8y=0 mai i 11x+11y=1045 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
11y+8y=1045
Tāpiri 11x ki te -11x. Ka whakakore atu ngā kupu 11x me -11x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
19y=1045
Tāpiri 11y ki te 8y.
y=55
Whakawehea ngā taha e rua ki te 19.
11x-8\times 55=0
Whakaurua te 55 mō y ki 11x-8y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
11x-440=0
Whakareatia -8 ki te 55.
11x=440
Me tāpiri 440 ki ngā taha e rua o te whārite.
x=40
Whakawehea ngā taha e rua ki te 11.
x=40,y=55
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}