\left\{ \begin{array} { l } { 2 x - y = 5 } \\ { 4 x + 6 y = 24 } \end{array} \right.
Whakaoti mō x, y
x = \frac{27}{8} = 3\frac{3}{8} = 3.375
y = \frac{7}{4} = 1\frac{3}{4} = 1.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-y=5,4x+6y=24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y+5
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(y+5\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2}y+\frac{5}{2}
Whakareatia \frac{1}{2} ki te y+5.
4\left(\frac{1}{2}y+\frac{5}{2}\right)+6y=24
Whakakapia te \frac{5+y}{2} mō te x ki tērā atu whārite, 4x+6y=24.
2y+10+6y=24
Whakareatia 4 ki te \frac{5+y}{2}.
8y+10=24
Tāpiri 2y ki te 6y.
8y=14
Me tango 10 mai i ngā taha e rua o te whārite.
y=\frac{7}{4}
Whakawehea ngā taha e rua ki te 8.
x=\frac{1}{2}\times \frac{7}{4}+\frac{5}{2}
Whakaurua te \frac{7}{4} mō y ki x=\frac{1}{2}y+\frac{5}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{7}{8}+\frac{5}{2}
Whakareatia \frac{1}{2} ki te \frac{7}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{27}{8}
Tāpiri \frac{5}{2} ki te \frac{7}{8} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{27}{8},y=\frac{7}{4}
Kua oti te pūnaha te whakatau.
2x-y=5,4x+6y=24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}2&-1\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\4&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-\left(-4\right)}&-\frac{-1}{2\times 6-\left(-4\right)}\\-\frac{4}{2\times 6-\left(-4\right)}&\frac{2}{2\times 6-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&\frac{1}{16}\\-\frac{1}{4}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 5+\frac{1}{16}\times 24\\-\frac{1}{4}\times 5+\frac{1}{8}\times 24\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{27}{8}\\\frac{7}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{27}{8},y=\frac{7}{4}
Tangohia ngā huānga poukapa x me y.
2x-y=5,4x+6y=24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x+4\left(-1\right)y=4\times 5,2\times 4x+2\times 6y=2\times 24
Kia ōrite ai a 2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x-4y=20,8x+12y=48
Whakarūnātia.
8x-8x-4y-12y=20-48
Me tango 8x+12y=48 mai i 8x-4y=20 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-12y=20-48
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-16y=20-48
Tāpiri -4y ki te -12y.
-16y=-28
Tāpiri 20 ki te -48.
y=\frac{7}{4}
Whakawehea ngā taha e rua ki te -16.
4x+6\times \frac{7}{4}=24
Whakaurua te \frac{7}{4} mō y ki 4x+6y=24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+\frac{21}{2}=24
Whakareatia 6 ki te \frac{7}{4}.
4x=\frac{27}{2}
Me tango \frac{21}{2} mai i ngā taha e rua o te whārite.
x=\frac{27}{8}
Whakawehea ngā taha e rua ki te 4.
x=\frac{27}{8},y=\frac{7}{4}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}