Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x+3y=30
Whakaarohia te whārite tuarua. Me tāpiri te 3y ki ngā taha e rua.
2x-y=5,-x+3y=30
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y+5
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(y+5\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2}y+\frac{5}{2}
Whakareatia \frac{1}{2} ki te y+5.
-\left(\frac{1}{2}y+\frac{5}{2}\right)+3y=30
Whakakapia te \frac{5+y}{2} mō te x ki tērā atu whārite, -x+3y=30.
-\frac{1}{2}y-\frac{5}{2}+3y=30
Whakareatia -1 ki te \frac{5+y}{2}.
\frac{5}{2}y-\frac{5}{2}=30
Tāpiri -\frac{y}{2} ki te 3y.
\frac{5}{2}y=\frac{65}{2}
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
y=13
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{2}\times 13+\frac{5}{2}
Whakaurua te 13 mō y ki x=\frac{1}{2}y+\frac{5}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{13+5}{2}
Whakareatia \frac{1}{2} ki te 13.
x=9
Tāpiri \frac{5}{2} ki te \frac{13}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=9,y=13
Kua oti te pūnaha te whakatau.
-x+3y=30
Whakaarohia te whārite tuarua. Me tāpiri te 3y ki ngā taha e rua.
2x-y=5,-x+3y=30
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\30\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\-1&3\end{matrix}\right))\left(\begin{matrix}2&-1\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&3\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\-1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&3\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&3\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-\left(-1\right)\right)}&-\frac{-1}{2\times 3-\left(-\left(-1\right)\right)}\\-\frac{-1}{2\times 3-\left(-\left(-1\right)\right)}&\frac{2}{2\times 3-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\30\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{1}{5}\\\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}5\\30\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 5+\frac{1}{5}\times 30\\\frac{1}{5}\times 5+\frac{2}{5}\times 30\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\13\end{matrix}\right)
Mahia ngā tātaitanga.
x=9,y=13
Tangohia ngā huānga poukapa x me y.
-x+3y=30
Whakaarohia te whārite tuarua. Me tāpiri te 3y ki ngā taha e rua.
2x-y=5,-x+3y=30
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-\left(-y\right)=-5,2\left(-1\right)x+2\times 3y=2\times 30
Kia ōrite ai a 2x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-2x+y=-5,-2x+6y=60
Whakarūnātia.
-2x+2x+y-6y=-5-60
Me tango -2x+6y=60 mai i -2x+y=-5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-6y=-5-60
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=-5-60
Tāpiri y ki te -6y.
-5y=-65
Tāpiri -5 ki te -60.
y=13
Whakawehea ngā taha e rua ki te -5.
-x+3\times 13=30
Whakaurua te 13 mō y ki -x+3y=30. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x+39=30
Whakareatia 3 ki te 13.
-x=-9
Me tango 39 mai i ngā taha e rua o te whārite.
x=9
Whakawehea ngā taha e rua ki te -1.
x=9,y=13
Kua oti te pūnaha te whakatau.