Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-y-4x=-3
Whakaarohia te whārite tuatahi. Tangohia te 4x mai i ngā taha e rua.
-2x-y=-3
Pahekotia te 2x me -4x, ka -2x.
x+y=\frac{1}{2}
Whakaarohia te whārite tuarua. Whakawehea ngā taha e rua ki te 2.
-2x-y=-3,x+y=\frac{1}{2}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2x-y=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-2x=y-3
Me tāpiri y ki ngā taha e rua o te whārite.
x=-\frac{1}{2}\left(y-3\right)
Whakawehea ngā taha e rua ki te -2.
x=-\frac{1}{2}y+\frac{3}{2}
Whakareatia -\frac{1}{2} ki te y-3.
-\frac{1}{2}y+\frac{3}{2}+y=\frac{1}{2}
Whakakapia te \frac{-y+3}{2} mō te x ki tērā atu whārite, x+y=\frac{1}{2}.
\frac{1}{2}y+\frac{3}{2}=\frac{1}{2}
Tāpiri -\frac{y}{2} ki te y.
\frac{1}{2}y=-1
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
y=-2
Me whakarea ngā taha e rua ki te 2.
x=-\frac{1}{2}\left(-2\right)+\frac{3}{2}
Whakaurua te -2 mō y ki x=-\frac{1}{2}y+\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1+\frac{3}{2}
Whakareatia -\frac{1}{2} ki te -2.
x=\frac{5}{2}
Tāpiri \frac{3}{2} ki te 1.
x=\frac{5}{2},y=-2
Kua oti te pūnaha te whakatau.
2x-y-4x=-3
Whakaarohia te whārite tuatahi. Tangohia te 4x mai i ngā taha e rua.
-2x-y=-3
Pahekotia te 2x me -4x, ka -2x.
x+y=\frac{1}{2}
Whakaarohia te whārite tuarua. Whakawehea ngā taha e rua ki te 2.
-2x-y=-3,x+y=\frac{1}{2}
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\\frac{1}{2}\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-2&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\\frac{1}{2}\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\\frac{1}{2}\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\\frac{1}{2}\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-2-\left(-1\right)}&-\frac{-1}{-2-\left(-1\right)}\\-\frac{1}{-2-\left(-1\right)}&-\frac{2}{-2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-3\\\frac{1}{2}\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-1\\1&2\end{matrix}\right)\left(\begin{matrix}-3\\\frac{1}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\left(-3\right)-\frac{1}{2}\\-3+2\times \frac{1}{2}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{2},y=-2
Tangohia ngā huānga poukapa x me y.
2x-y-4x=-3
Whakaarohia te whārite tuatahi. Tangohia te 4x mai i ngā taha e rua.
-2x-y=-3
Pahekotia te 2x me -4x, ka -2x.
x+y=\frac{1}{2}
Whakaarohia te whārite tuarua. Whakawehea ngā taha e rua ki te 2.
-2x-y=-3,x+y=\frac{1}{2}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-y=-3,-2x-2y=-2\times \frac{1}{2}
Kia ōrite ai a -2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-2x-y=-3,-2x-2y=-1
Whakarūnātia.
-2x+2x-y+2y=-3+1
Me tango -2x-2y=-1 mai i -2x-y=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y+2y=-3+1
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=-3+1
Tāpiri -y ki te 2y.
y=-2
Tāpiri -3 ki te 1.
x-2=\frac{1}{2}
Whakaurua te -2 mō y ki x+y=\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5}{2}
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=\frac{5}{2},y=-2
Kua oti te pūnaha te whakatau.