Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-y=4,3x-5y=15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y+4
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(y+4\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2}y+2
Whakareatia \frac{1}{2} ki te y+4.
3\left(\frac{1}{2}y+2\right)-5y=15
Whakakapia te \frac{y}{2}+2 mō te x ki tērā atu whārite, 3x-5y=15.
\frac{3}{2}y+6-5y=15
Whakareatia 3 ki te \frac{y}{2}+2.
-\frac{7}{2}y+6=15
Tāpiri \frac{3y}{2} ki te -5y.
-\frac{7}{2}y=9
Me tango 6 mai i ngā taha e rua o te whārite.
y=-\frac{18}{7}
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{2}\left(-\frac{18}{7}\right)+2
Whakaurua te -\frac{18}{7} mō y ki x=\frac{1}{2}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{9}{7}+2
Whakareatia \frac{1}{2} ki te -\frac{18}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{5}{7}
Tāpiri 2 ki te -\frac{9}{7}.
x=\frac{5}{7},y=-\frac{18}{7}
Kua oti te pūnaha te whakatau.
2x-y=4,3x-5y=15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}4\\15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\3&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}4\\15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}4\\15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-\left(-3\right)}&-\frac{-1}{2\left(-5\right)-\left(-3\right)}\\-\frac{3}{2\left(-5\right)-\left(-3\right)}&\frac{2}{2\left(-5\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}&-\frac{1}{7}\\\frac{3}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}4\\15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}\times 4-\frac{1}{7}\times 15\\\frac{3}{7}\times 4-\frac{2}{7}\times 15\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}\\-\frac{18}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{7},y=-\frac{18}{7}
Tangohia ngā huānga poukapa x me y.
2x-y=4,3x-5y=15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\left(-1\right)y=3\times 4,2\times 3x+2\left(-5\right)y=2\times 15
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x-3y=12,6x-10y=30
Whakarūnātia.
6x-6x-3y+10y=12-30
Me tango 6x-10y=30 mai i 6x-3y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y+10y=12-30
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7y=12-30
Tāpiri -3y ki te 10y.
7y=-18
Tāpiri 12 ki te -30.
y=-\frac{18}{7}
Whakawehea ngā taha e rua ki te 7.
3x-5\left(-\frac{18}{7}\right)=15
Whakaurua te -\frac{18}{7} mō y ki 3x-5y=15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+\frac{90}{7}=15
Whakareatia -5 ki te -\frac{18}{7}.
3x=\frac{15}{7}
Me tango \frac{90}{7} mai i ngā taha e rua o te whārite.
x=\frac{5}{7}
Whakawehea ngā taha e rua ki te 3.
x=\frac{5}{7},y=-\frac{18}{7}
Kua oti te pūnaha te whakatau.