Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-y=3,x-y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y+3
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(y+3\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2}y+\frac{3}{2}
Whakareatia \frac{1}{2} ki te y+3.
\frac{1}{2}y+\frac{3}{2}-y=-1
Whakakapia te \frac{3+y}{2} mō te x ki tērā atu whārite, x-y=-1.
-\frac{1}{2}y+\frac{3}{2}=-1
Tāpiri \frac{y}{2} ki te -y.
-\frac{1}{2}y=-\frac{5}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
y=5
Me whakarea ngā taha e rua ki te -2.
x=\frac{1}{2}\times 5+\frac{3}{2}
Whakaurua te 5 mō y ki x=\frac{1}{2}y+\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5+3}{2}
Whakareatia \frac{1}{2} ki te 5.
x=4
Tāpiri \frac{3}{2} ki te \frac{5}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=5
Kua oti te pūnaha te whakatau.
2x-y=3,x-y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-1\right)}&-\frac{-1}{2\left(-1\right)-\left(-1\right)}\\-\frac{1}{2\left(-1\right)-\left(-1\right)}&\frac{2}{2\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3-\left(-1\right)\\3-2\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=5
Tangohia ngā huānga poukapa x me y.
2x-y=3,x-y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-x-y+y=3+1
Me tango x-y=-1 mai i 2x-y=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2x-x=3+1
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
x=3+1
Tāpiri 2x ki te -x.
x=4
Tāpiri 3 ki te 1.
4-y=-1
Whakaurua te 4 mō x ki x-y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-y=-5
Me tango 4 mai i ngā taha e rua o te whārite.
x=4,y=5
Kua oti te pūnaha te whakatau.