Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-y=3,3x+4y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y+3
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(y+3\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2}y+\frac{3}{2}
Whakareatia \frac{1}{2} ki te y+3.
3\left(\frac{1}{2}y+\frac{3}{2}\right)+4y=2
Whakakapia te \frac{3+y}{2} mō te x ki tērā atu whārite, 3x+4y=2.
\frac{3}{2}y+\frac{9}{2}+4y=2
Whakareatia 3 ki te \frac{3+y}{2}.
\frac{11}{2}y+\frac{9}{2}=2
Tāpiri \frac{3y}{2} ki te 4y.
\frac{11}{2}y=-\frac{5}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
y=-\frac{5}{11}
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{2}\left(-\frac{5}{11}\right)+\frac{3}{2}
Whakaurua te -\frac{5}{11} mō y ki x=\frac{1}{2}y+\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{5}{22}+\frac{3}{2}
Whakareatia \frac{1}{2} ki te -\frac{5}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{14}{11}
Tāpiri \frac{3}{2} ki te -\frac{5}{22} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{14}{11},y=-\frac{5}{11}
Kua oti te pūnaha te whakatau.
2x-y=3,3x+4y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}2&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-\left(-3\right)}&-\frac{-1}{2\times 4-\left(-3\right)}\\-\frac{3}{2\times 4-\left(-3\right)}&\frac{2}{2\times 4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}3\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}&\frac{1}{11}\\-\frac{3}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}\times 3+\frac{1}{11}\times 2\\-\frac{3}{11}\times 3+\frac{2}{11}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{14}{11}\\-\frac{5}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{14}{11},y=-\frac{5}{11}
Tangohia ngā huānga poukapa x me y.
2x-y=3,3x+4y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\left(-1\right)y=3\times 3,2\times 3x+2\times 4y=2\times 2
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x-3y=9,6x+8y=4
Whakarūnātia.
6x-6x-3y-8y=9-4
Me tango 6x+8y=4 mai i 6x-3y=9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-8y=9-4
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-11y=9-4
Tāpiri -3y ki te -8y.
-11y=5
Tāpiri 9 ki te -4.
y=-\frac{5}{11}
Whakawehea ngā taha e rua ki te -11.
3x+4\left(-\frac{5}{11}\right)=2
Whakaurua te -\frac{5}{11} mō y ki 3x+4y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-\frac{20}{11}=2
Whakareatia 4 ki te -\frac{5}{11}.
3x=\frac{42}{11}
Me tāpiri \frac{20}{11} ki ngā taha e rua o te whārite.
x=\frac{14}{11}
Whakawehea ngā taha e rua ki te 3.
x=\frac{14}{11},y=-\frac{5}{11}
Kua oti te pūnaha te whakatau.