\left\{ \begin{array} { l } { 2 x - y = 2 } \\ { 3 x = 2 ( 5 - y ) } \end{array} \right.
Whakaoti mō x, y
x=2
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x=10-2y
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 5-y.
3x+2y=10
Me tāpiri te 2y ki ngā taha e rua.
2x-y=2,3x+2y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y+2
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(y+2\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2}y+1
Whakareatia \frac{1}{2} ki te y+2.
3\left(\frac{1}{2}y+1\right)+2y=10
Whakakapia te \frac{y}{2}+1 mō te x ki tērā atu whārite, 3x+2y=10.
\frac{3}{2}y+3+2y=10
Whakareatia 3 ki te \frac{y}{2}+1.
\frac{7}{2}y+3=10
Tāpiri \frac{3y}{2} ki te 2y.
\frac{7}{2}y=7
Me tango 3 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{2}\times 2+1
Whakaurua te 2 mō y ki x=\frac{1}{2}y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1+1
Whakareatia \frac{1}{2} ki te 2.
x=2
Tāpiri 1 ki te 1.
x=2,y=2
Kua oti te pūnaha te whakatau.
3x=10-2y
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 5-y.
3x+2y=10
Me tāpiri te 2y ki ngā taha e rua.
2x-y=2,3x+2y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\right)}&-\frac{-1}{2\times 2-\left(-3\right)}\\-\frac{3}{2\times 2-\left(-3\right)}&\frac{2}{2\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te poukapa kōaro ko \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kia tuhia anō ai te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{1}{7}\\-\frac{3}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 2+\frac{1}{7}\times 10\\-\frac{3}{7}\times 2+\frac{2}{7}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=2
Tangohia ngā huānga poukapa x me y.
3x=10-2y
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 5-y.
3x+2y=10
Me tāpiri te 2y ki ngā taha e rua.
2x-y=2,3x+2y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\left(-1\right)y=3\times 2,2\times 3x+2\times 2y=2\times 10
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x-3y=6,6x+4y=20
Whakarūnātia.
6x-6x-3y-4y=6-20
Me tango 6x+4y=20 mai i 6x-3y=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-4y=6-20
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=6-20
Tāpiri -3y ki te -4y.
-7y=-14
Tāpiri 6 ki te -20.
y=2
Whakawehea ngā taha e rua ki te -7.
3x+2\times 2=10
Whakaurua te 2 mō y ki 3x+2y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+4=10
Whakareatia 2 ki te 2.
3x=6
Me tango 4 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 3.
x=2,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}