\left\{ \begin{array} { l } { 2 x - x = 4 m + 2 } \\ { x - 2 x = 5 m - 5 } \end{array} \right.
Whakaoti mō x, m
x = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
m=\frac{1}{3}\approx 0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=4m+2
Whakaarohia te whārite tuatahi. Pahekotia te 2x me -x, ka x.
-\left(4m+2\right)-5m=-5
Whakakapia te 4m+2 mō te x ki tērā atu whārite, -x-5m=-5.
-4m-2-5m=-5
Whakareatia -1 ki te 4m+2.
-9m-2=-5
Tāpiri -4m ki te -5m.
-9m=-3
Me tāpiri 2 ki ngā taha e rua o te whārite.
m=\frac{1}{3}
Whakawehea ngā taha e rua ki te -9.
x=4\times \frac{1}{3}+2
Whakaurua te \frac{1}{3} mō m ki x=4m+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4}{3}+2
Whakareatia 4 ki te \frac{1}{3}.
x=\frac{10}{3}
Tāpiri 2 ki te \frac{4}{3}.
x=\frac{10}{3},m=\frac{1}{3}
Kua oti te pūnaha te whakatau.
x=4m+2
Whakaarohia te whārite tuatahi. Pahekotia te 2x me -x, ka x.
x-4m=2
Tangohia te 4m mai i ngā taha e rua.
-x=5m-5
Whakaarohia te whārite tuarua. Pahekotia te x me -2x, ka -x.
-x-5m=-5
Tangohia te 5m mai i ngā taha e rua.
x-4m=2,-x-5m=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-4\\-1&-5\end{matrix}\right)\left(\begin{matrix}x\\m\end{matrix}\right)=\left(\begin{matrix}2\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-4\\-1&-5\end{matrix}\right))\left(\begin{matrix}1&-4\\-1&-5\end{matrix}\right)\left(\begin{matrix}x\\m\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\-1&-5\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-4\\-1&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\m\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\-1&-5\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\m\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\-1&-5\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\m\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-\left(-4\left(-1\right)\right)}&-\frac{-4}{-5-\left(-4\left(-1\right)\right)}\\-\frac{-1}{-5-\left(-4\left(-1\right)\right)}&\frac{1}{-5-\left(-4\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\m\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}&-\frac{4}{9}\\-\frac{1}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\m\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}\times 2-\frac{4}{9}\left(-5\right)\\-\frac{1}{9}\times 2-\frac{1}{9}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\m\end{matrix}\right)=\left(\begin{matrix}\frac{10}{3}\\\frac{1}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{10}{3},m=\frac{1}{3}
Tangohia ngā huānga poukapa x me m.
x=4m+2
Whakaarohia te whārite tuatahi. Pahekotia te 2x me -x, ka x.
x-4m=2
Tangohia te 4m mai i ngā taha e rua.
-x=5m-5
Whakaarohia te whārite tuarua. Pahekotia te x me -2x, ka -x.
-x-5m=-5
Tangohia te 5m mai i ngā taha e rua.
x-4m=2,-x-5m=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-x-\left(-4m\right)=-2,-x-5m=-5
Kia ōrite ai a x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-x+4m=-2,-x-5m=-5
Whakarūnātia.
-x+x+4m+5m=-2+5
Me tango -x-5m=-5 mai i -x+4m=-2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4m+5m=-2+5
Tāpiri -x ki te x. Ka whakakore atu ngā kupu -x me x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
9m=-2+5
Tāpiri 4m ki te 5m.
9m=3
Tāpiri -2 ki te 5.
m=\frac{1}{3}
Whakawehea ngā taha e rua ki te 9.
-x-5\times \frac{1}{3}=-5
Whakaurua te \frac{1}{3} mō m ki -x-5m=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x-\frac{5}{3}=-5
Whakareatia -5 ki te \frac{1}{3}.
-x=-\frac{10}{3}
Me tāpiri \frac{5}{3} ki ngā taha e rua o te whārite.
x=\frac{10}{3}
Whakawehea ngā taha e rua ki te -1.
x=\frac{10}{3},m=\frac{1}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}