\left\{ \begin{array} { l } { 2 x - 6 y = 34 } \\ { 8 x - 3 y = - 11 } \end{array} \right.
Whakaoti mō x, y
x=-4
y=-7
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-6y=34,8x-3y=-11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-6y=34
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=6y+34
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(6y+34\right)
Whakawehea ngā taha e rua ki te 2.
x=3y+17
Whakareatia \frac{1}{2} ki te 6y+34.
8\left(3y+17\right)-3y=-11
Whakakapia te 3y+17 mō te x ki tērā atu whārite, 8x-3y=-11.
24y+136-3y=-11
Whakareatia 8 ki te 3y+17.
21y+136=-11
Tāpiri 24y ki te -3y.
21y=-147
Me tango 136 mai i ngā taha e rua o te whārite.
y=-7
Whakawehea ngā taha e rua ki te 21.
x=3\left(-7\right)+17
Whakaurua te -7 mō y ki x=3y+17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-21+17
Whakareatia 3 ki te -7.
x=-4
Tāpiri 17 ki te -21.
x=-4,y=-7
Kua oti te pūnaha te whakatau.
2x-6y=34,8x-3y=-11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-6\\8&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}34\\-11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-6\\8&-3\end{matrix}\right))\left(\begin{matrix}2&-6\\8&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\8&-3\end{matrix}\right))\left(\begin{matrix}34\\-11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-6\\8&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\8&-3\end{matrix}\right))\left(\begin{matrix}34\\-11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\8&-3\end{matrix}\right))\left(\begin{matrix}34\\-11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-\left(-6\times 8\right)}&-\frac{-6}{2\left(-3\right)-\left(-6\times 8\right)}\\-\frac{8}{2\left(-3\right)-\left(-6\times 8\right)}&\frac{2}{2\left(-3\right)-\left(-6\times 8\right)}\end{matrix}\right)\left(\begin{matrix}34\\-11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}&\frac{1}{7}\\-\frac{4}{21}&\frac{1}{21}\end{matrix}\right)\left(\begin{matrix}34\\-11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}\times 34+\frac{1}{7}\left(-11\right)\\-\frac{4}{21}\times 34+\frac{1}{21}\left(-11\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-7\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=-7
Tangohia ngā huānga poukapa x me y.
2x-6y=34,8x-3y=-11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\times 2x+8\left(-6\right)y=8\times 34,2\times 8x+2\left(-3\right)y=2\left(-11\right)
Kia ōrite ai a 2x me 8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
16x-48y=272,16x-6y=-22
Whakarūnātia.
16x-16x-48y+6y=272+22
Me tango 16x-6y=-22 mai i 16x-48y=272 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-48y+6y=272+22
Tāpiri 16x ki te -16x. Ka whakakore atu ngā kupu 16x me -16x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-42y=272+22
Tāpiri -48y ki te 6y.
-42y=294
Tāpiri 272 ki te 22.
y=-7
Whakawehea ngā taha e rua ki te -42.
8x-3\left(-7\right)=-11
Whakaurua te -7 mō y ki 8x-3y=-11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
8x+21=-11
Whakareatia -3 ki te -7.
8x=-32
Me tango 21 mai i ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te 8.
x=-4,y=-7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}