\left\{ \begin{array} { l } { 2 x - 5 y = - 3 } \\ { - 4 x + y = - 3 } \end{array} \right.
Whakaoti mō x, y
x=1
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-5y=-3,-4x+y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-5y=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=5y-3
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(5y-3\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{5}{2}y-\frac{3}{2}
Whakareatia \frac{1}{2} ki te 5y-3.
-4\left(\frac{5}{2}y-\frac{3}{2}\right)+y=-3
Whakakapia te \frac{5y-3}{2} mō te x ki tērā atu whārite, -4x+y=-3.
-10y+6+y=-3
Whakareatia -4 ki te \frac{5y-3}{2}.
-9y+6=-3
Tāpiri -10y ki te y.
-9y=-9
Me tango 6 mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te -9.
x=\frac{5-3}{2}
Whakaurua te 1 mō y ki x=\frac{5}{2}y-\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Tāpiri -\frac{3}{2} ki te \frac{5}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=1
Kua oti te pūnaha te whakatau.
2x-5y=-3,-4x+y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-5\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-5\\-4&1\end{matrix}\right))\left(\begin{matrix}2&-5\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\-4&1\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-5\\-4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\-4&1\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\-4&1\end{matrix}\right))\left(\begin{matrix}-3\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-5\left(-4\right)\right)}&-\frac{-5}{2-\left(-5\left(-4\right)\right)}\\-\frac{-4}{2-\left(-5\left(-4\right)\right)}&\frac{2}{2-\left(-5\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}-3\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{18}&-\frac{5}{18}\\-\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}-3\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{18}\left(-3\right)-\frac{5}{18}\left(-3\right)\\-\frac{2}{9}\left(-3\right)-\frac{1}{9}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=1
Tangohia ngā huānga poukapa x me y.
2x-5y=-3,-4x+y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4\times 2x-4\left(-5\right)y=-4\left(-3\right),2\left(-4\right)x+2y=2\left(-3\right)
Kia ōrite ai a 2x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-8x+20y=12,-8x+2y=-6
Whakarūnātia.
-8x+8x+20y-2y=12+6
Me tango -8x+2y=-6 mai i -8x+20y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y-2y=12+6
Tāpiri -8x ki te 8x. Ka whakakore atu ngā kupu -8x me 8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
18y=12+6
Tāpiri 20y ki te -2y.
18y=18
Tāpiri 12 ki te 6.
y=1
Whakawehea ngā taha e rua ki te 18.
-4x+1=-3
Whakaurua te 1 mō y ki -4x+y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x=-4
Me tango 1 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -4.
x=1,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}