Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-5y=-11,3x+4y=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-5y=-11
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=5y-11
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(5y-11\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{5}{2}y-\frac{11}{2}
Whakareatia \frac{1}{2} ki te 5y-11.
3\left(\frac{5}{2}y-\frac{11}{2}\right)+4y=18
Whakakapia te \frac{5y-11}{2} mō te x ki tērā atu whārite, 3x+4y=18.
\frac{15}{2}y-\frac{33}{2}+4y=18
Whakareatia 3 ki te \frac{5y-11}{2}.
\frac{23}{2}y-\frac{33}{2}=18
Tāpiri \frac{15y}{2} ki te 4y.
\frac{23}{2}y=\frac{69}{2}
Me tāpiri \frac{33}{2} ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{23}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{2}\times 3-\frac{11}{2}
Whakaurua te 3 mō y ki x=\frac{5}{2}y-\frac{11}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{15-11}{2}
Whakareatia \frac{5}{2} ki te 3.
x=2
Tāpiri -\frac{11}{2} ki te \frac{15}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=3
Kua oti te pūnaha te whakatau.
2x-5y=-11,3x+4y=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-5\\3&4\end{matrix}\right))\left(\begin{matrix}2&-5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\3&4\end{matrix}\right))\left(\begin{matrix}-11\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-5\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\3&4\end{matrix}\right))\left(\begin{matrix}-11\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\3&4\end{matrix}\right))\left(\begin{matrix}-11\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-\left(-5\times 3\right)}&-\frac{-5}{2\times 4-\left(-5\times 3\right)}\\-\frac{3}{2\times 4-\left(-5\times 3\right)}&\frac{2}{2\times 4-\left(-5\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-11\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{23}&\frac{5}{23}\\-\frac{3}{23}&\frac{2}{23}\end{matrix}\right)\left(\begin{matrix}-11\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{23}\left(-11\right)+\frac{5}{23}\times 18\\-\frac{3}{23}\left(-11\right)+\frac{2}{23}\times 18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=3
Tangohia ngā huānga poukapa x me y.
2x-5y=-11,3x+4y=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\left(-5\right)y=3\left(-11\right),2\times 3x+2\times 4y=2\times 18
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x-15y=-33,6x+8y=36
Whakarūnātia.
6x-6x-15y-8y=-33-36
Me tango 6x+8y=36 mai i 6x-15y=-33 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-15y-8y=-33-36
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-23y=-33-36
Tāpiri -15y ki te -8y.
-23y=-69
Tāpiri -33 ki te -36.
y=3
Whakawehea ngā taha e rua ki te -23.
3x+4\times 3=18
Whakaurua te 3 mō y ki 3x+4y=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+12=18
Whakareatia 4 ki te 3.
3x=6
Me tango 12 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 3.
x=2,y=3
Kua oti te pūnaha te whakatau.