\left\{ \begin{array} { l } { 2 x - 3 y - 10 = 0 } \\ { 7 y = - 17 - 8 x } \end{array} \right.
Whakaoti mō x, y
x=\frac{1}{2}=0.5
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-3y=10
Whakaarohia te whārite tuatahi. Me tāpiri te 10 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
7y+8x=-17
Whakaarohia te whārite tuarua. Me tāpiri te 8x ki ngā taha e rua.
2x-3y=10,8x+7y=-17
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y+10
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y+10\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y+5
Whakareatia \frac{1}{2} ki te 3y+10.
8\left(\frac{3}{2}y+5\right)+7y=-17
Whakakapia te \frac{3y}{2}+5 mō te x ki tērā atu whārite, 8x+7y=-17.
12y+40+7y=-17
Whakareatia 8 ki te \frac{3y}{2}+5.
19y+40=-17
Tāpiri 12y ki te 7y.
19y=-57
Me tango 40 mai i ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua ki te 19.
x=\frac{3}{2}\left(-3\right)+5
Whakaurua te -3 mō y ki x=\frac{3}{2}y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{9}{2}+5
Whakareatia \frac{3}{2} ki te -3.
x=\frac{1}{2}
Tāpiri 5 ki te -\frac{9}{2}.
x=\frac{1}{2},y=-3
Kua oti te pūnaha te whakatau.
2x-3y=10
Whakaarohia te whārite tuatahi. Me tāpiri te 10 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
7y+8x=-17
Whakaarohia te whārite tuarua. Me tāpiri te 8x ki ngā taha e rua.
2x-3y=10,8x+7y=-17
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\8&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-17\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\8&7\end{matrix}\right))\left(\begin{matrix}2&-3\\8&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\8&7\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\8&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\8&7\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\8&7\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2\times 7-\left(-3\times 8\right)}&-\frac{-3}{2\times 7-\left(-3\times 8\right)}\\-\frac{8}{2\times 7-\left(-3\times 8\right)}&\frac{2}{2\times 7-\left(-3\times 8\right)}\end{matrix}\right)\left(\begin{matrix}10\\-17\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{38}&\frac{3}{38}\\-\frac{4}{19}&\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}10\\-17\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{38}\times 10+\frac{3}{38}\left(-17\right)\\-\frac{4}{19}\times 10+\frac{1}{19}\left(-17\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{2},y=-3
Tangohia ngā huānga poukapa x me y.
2x-3y=10
Whakaarohia te whārite tuatahi. Me tāpiri te 10 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
7y+8x=-17
Whakaarohia te whārite tuarua. Me tāpiri te 8x ki ngā taha e rua.
2x-3y=10,8x+7y=-17
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\times 2x+8\left(-3\right)y=8\times 10,2\times 8x+2\times 7y=2\left(-17\right)
Kia ōrite ai a 2x me 8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
16x-24y=80,16x+14y=-34
Whakarūnātia.
16x-16x-24y-14y=80+34
Me tango 16x+14y=-34 mai i 16x-24y=80 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-24y-14y=80+34
Tāpiri 16x ki te -16x. Ka whakakore atu ngā kupu 16x me -16x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-38y=80+34
Tāpiri -24y ki te -14y.
-38y=114
Tāpiri 80 ki te 34.
y=-3
Whakawehea ngā taha e rua ki te -38.
8x+7\left(-3\right)=-17
Whakaurua te -3 mō y ki 8x+7y=-17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
8x-21=-17
Whakareatia 7 ki te -3.
8x=4
Me tāpiri 21 ki ngā taha e rua o te whārite.
x=\frac{1}{2}
Whakawehea ngā taha e rua ki te 8.
x=\frac{1}{2},y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}