\left\{ \begin{array} { l } { 2 x - 3 y = 4 } \\ { 4 x + y = - 6 } \end{array} \right.
Whakaoti mō x, y
x=-1
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-3y=4,4x+y=-6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y+4
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y+4\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y+2
Whakareatia \frac{1}{2} ki te 3y+4.
4\left(\frac{3}{2}y+2\right)+y=-6
Whakakapia te \frac{3y}{2}+2 mō te x ki tērā atu whārite, 4x+y=-6.
6y+8+y=-6
Whakareatia 4 ki te \frac{3y}{2}+2.
7y+8=-6
Tāpiri 6y ki te y.
7y=-14
Me tango 8 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te 7.
x=\frac{3}{2}\left(-2\right)+2
Whakaurua te -2 mō y ki x=\frac{3}{2}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-3+2
Whakareatia \frac{3}{2} ki te -2.
x=-1
Tāpiri 2 ki te -3.
x=-1,y=-2
Kua oti te pūnaha te whakatau.
2x-3y=4,4x+y=-6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\4&1\end{matrix}\right))\left(\begin{matrix}2&-3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&1\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&1\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&1\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\times 4\right)}&-\frac{-3}{2-\left(-3\times 4\right)}\\-\frac{4}{2-\left(-3\times 4\right)}&\frac{2}{2-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}4\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{3}{14}\\-\frac{2}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}4\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 4+\frac{3}{14}\left(-6\right)\\-\frac{2}{7}\times 4+\frac{1}{7}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=-2
Tangohia ngā huānga poukapa x me y.
2x-3y=4,4x+y=-6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x+4\left(-3\right)y=4\times 4,2\times 4x+2y=2\left(-6\right)
Kia ōrite ai a 2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x-12y=16,8x+2y=-12
Whakarūnātia.
8x-8x-12y-2y=16+12
Me tango 8x+2y=-12 mai i 8x-12y=16 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-12y-2y=16+12
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-14y=16+12
Tāpiri -12y ki te -2y.
-14y=28
Tāpiri 16 ki te 12.
y=-2
Whakawehea ngā taha e rua ki te -14.
4x-2=-6
Whakaurua te -2 mō y ki 4x+y=-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=-4
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 4.
x=-1,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}