\left\{ \begin{array} { l } { 2 x - 3 y = 1 } \\ { \frac { x + 1 } { 3 } + 1 = \frac { 5 - y } { 2 } } \end{array} \right.
Whakaoti mō x, y
x=2
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(x+1\right)+6=3\left(5-y\right)
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
2x+2+6=3\left(5-y\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+1.
2x+8=3\left(5-y\right)
Tāpirihia te 2 ki te 6, ka 8.
2x+8=15-3y
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 5-y.
2x+8+3y=15
Me tāpiri te 3y ki ngā taha e rua.
2x+3y=15-8
Tangohia te 8 mai i ngā taha e rua.
2x+3y=7
Tangohia te 8 i te 15, ka 7.
2x-3y=1,2x+3y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y+1
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y+1\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y+\frac{1}{2}
Whakareatia \frac{1}{2} ki te 3y+1.
2\left(\frac{3}{2}y+\frac{1}{2}\right)+3y=7
Whakakapia te \frac{3y+1}{2} mō te x ki tērā atu whārite, 2x+3y=7.
3y+1+3y=7
Whakareatia 2 ki te \frac{3y+1}{2}.
6y+1=7
Tāpiri 3y ki te 3y.
6y=6
Me tango 1 mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te 6.
x=\frac{3+1}{2}
Whakaurua te 1 mō y ki x=\frac{3}{2}y+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2
Tāpiri \frac{1}{2} ki te \frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=1
Kua oti te pūnaha te whakatau.
2\left(x+1\right)+6=3\left(5-y\right)
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
2x+2+6=3\left(5-y\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+1.
2x+8=3\left(5-y\right)
Tāpirihia te 2 ki te 6, ka 8.
2x+8=15-3y
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 5-y.
2x+8+3y=15
Me tāpiri te 3y ki ngā taha e rua.
2x+3y=15-8
Tangohia te 8 mai i ngā taha e rua.
2x+3y=7
Tangohia te 8 i te 15, ka 7.
2x-3y=1,2x+3y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\2&3\end{matrix}\right))\left(\begin{matrix}2&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-3\times 2\right)}&-\frac{-3}{2\times 3-\left(-3\times 2\right)}\\-\frac{2}{2\times 3-\left(-3\times 2\right)}&\frac{2}{2\times 3-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}1\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}+\frac{1}{4}\times 7\\-\frac{1}{6}+\frac{1}{6}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=1
Tangohia ngā huānga poukapa x me y.
2\left(x+1\right)+6=3\left(5-y\right)
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
2x+2+6=3\left(5-y\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+1.
2x+8=3\left(5-y\right)
Tāpirihia te 2 ki te 6, ka 8.
2x+8=15-3y
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 5-y.
2x+8+3y=15
Me tāpiri te 3y ki ngā taha e rua.
2x+3y=15-8
Tangohia te 8 mai i ngā taha e rua.
2x+3y=7
Tangohia te 8 i te 15, ka 7.
2x-3y=1,2x+3y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-2x-3y-3y=1-7
Me tango 2x+3y=7 mai i 2x-3y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-3y=1-7
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6y=1-7
Tāpiri -3y ki te -3y.
-6y=-6
Tāpiri 1 ki te -7.
y=1
Whakawehea ngā taha e rua ki te -6.
2x+3=7
Whakaurua te 1 mō y ki 2x+3y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=4
Me tango 3 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 2.
x=2,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}