\left\{ \begin{array} { l } { 2 x - 3 y = - 5 } \\ { 4 x + 9 y = - 7 } \end{array} \right.
Whakaoti mō x, y
x = -\frac{11}{5} = -2\frac{1}{5} = -2.2
y=\frac{1}{5}=0.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-3y=-5,4x+9y=-7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=-5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y-5
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y-5\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y-\frac{5}{2}
Whakareatia \frac{1}{2} ki te 3y-5.
4\left(\frac{3}{2}y-\frac{5}{2}\right)+9y=-7
Whakakapia te \frac{3y-5}{2} mō te x ki tērā atu whārite, 4x+9y=-7.
6y-10+9y=-7
Whakareatia 4 ki te \frac{3y-5}{2}.
15y-10=-7
Tāpiri 6y ki te 9y.
15y=3
Me tāpiri 10 ki ngā taha e rua o te whārite.
y=\frac{1}{5}
Whakawehea ngā taha e rua ki te 15.
x=\frac{3}{2}\times \frac{1}{5}-\frac{5}{2}
Whakaurua te \frac{1}{5} mō y ki x=\frac{3}{2}y-\frac{5}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3}{10}-\frac{5}{2}
Whakareatia \frac{3}{2} ki te \frac{1}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{11}{5}
Tāpiri -\frac{5}{2} ki te \frac{3}{10} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{11}{5},y=\frac{1}{5}
Kua oti te pūnaha te whakatau.
2x-3y=-5,4x+9y=-7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\4&9\end{matrix}\right))\left(\begin{matrix}2&-3\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&9\end{matrix}\right))\left(\begin{matrix}-5\\-7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\4&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&9\end{matrix}\right))\left(\begin{matrix}-5\\-7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&9\end{matrix}\right))\left(\begin{matrix}-5\\-7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2\times 9-\left(-3\times 4\right)}&-\frac{-3}{2\times 9-\left(-3\times 4\right)}\\-\frac{4}{2\times 9-\left(-3\times 4\right)}&\frac{2}{2\times 9-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-5\\-7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&\frac{1}{10}\\-\frac{2}{15}&\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}-5\\-7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\left(-5\right)+\frac{1}{10}\left(-7\right)\\-\frac{2}{15}\left(-5\right)+\frac{1}{15}\left(-7\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{5}\\\frac{1}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{11}{5},y=\frac{1}{5}
Tangohia ngā huānga poukapa x me y.
2x-3y=-5,4x+9y=-7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x+4\left(-3\right)y=4\left(-5\right),2\times 4x+2\times 9y=2\left(-7\right)
Kia ōrite ai a 2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x-12y=-20,8x+18y=-14
Whakarūnātia.
8x-8x-12y-18y=-20+14
Me tango 8x+18y=-14 mai i 8x-12y=-20 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-12y-18y=-20+14
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-30y=-20+14
Tāpiri -12y ki te -18y.
-30y=-6
Tāpiri -20 ki te 14.
y=\frac{1}{5}
Whakawehea ngā taha e rua ki te -30.
4x+9\times \frac{1}{5}=-7
Whakaurua te \frac{1}{5} mō y ki 4x+9y=-7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+\frac{9}{5}=-7
Whakareatia 9 ki te \frac{1}{5}.
4x=-\frac{44}{5}
Me tango \frac{9}{5} mai i ngā taha e rua o te whārite.
x=-\frac{11}{5}
Whakawehea ngā taha e rua ki te 4.
x=-\frac{11}{5},y=\frac{1}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}