\left\{ \begin{array} { l } { 2 x - 15 = 3 ( y + 2 ) } \\ { 7 ( x - 4 ) = - 1 - 5 y } \end{array} \right.
Whakaoti mō x, y
x=6
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-15=3y+6
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y+2.
2x-15-3y=6
Tangohia te 3y mai i ngā taha e rua.
2x-3y=6+15
Me tāpiri te 15 ki ngā taha e rua.
2x-3y=21
Tāpirihia te 6 ki te 15, ka 21.
7x-28=-1-5y
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te x-4.
7x-28+5y=-1
Me tāpiri te 5y ki ngā taha e rua.
7x+5y=-1+28
Me tāpiri te 28 ki ngā taha e rua.
7x+5y=27
Tāpirihia te -1 ki te 28, ka 27.
2x-3y=21,7x+5y=27
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=21
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y+21
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y+21\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y+\frac{21}{2}
Whakareatia \frac{1}{2} ki te 21+3y.
7\left(\frac{3}{2}y+\frac{21}{2}\right)+5y=27
Whakakapia te \frac{21+3y}{2} mō te x ki tērā atu whārite, 7x+5y=27.
\frac{21}{2}y+\frac{147}{2}+5y=27
Whakareatia 7 ki te \frac{21+3y}{2}.
\frac{31}{2}y+\frac{147}{2}=27
Tāpiri \frac{21y}{2} ki te 5y.
\frac{31}{2}y=-\frac{93}{2}
Me tango \frac{147}{2} mai i ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua o te whārite ki te \frac{31}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{2}\left(-3\right)+\frac{21}{2}
Whakaurua te -3 mō y ki x=\frac{3}{2}y+\frac{21}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-9+21}{2}
Whakareatia \frac{3}{2} ki te -3.
x=6
Tāpiri \frac{21}{2} ki te -\frac{9}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=6,y=-3
Kua oti te pūnaha te whakatau.
2x-15=3y+6
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y+2.
2x-15-3y=6
Tangohia te 3y mai i ngā taha e rua.
2x-3y=6+15
Me tāpiri te 15 ki ngā taha e rua.
2x-3y=21
Tāpirihia te 6 ki te 15, ka 21.
7x-28=-1-5y
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te x-4.
7x-28+5y=-1
Me tāpiri te 5y ki ngā taha e rua.
7x+5y=-1+28
Me tāpiri te 28 ki ngā taha e rua.
7x+5y=27
Tāpirihia te -1 ki te 28, ka 27.
2x-3y=21,7x+5y=27
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}21\\27\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\7&5\end{matrix}\right))\left(\begin{matrix}2&-3\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\7&5\end{matrix}\right))\left(\begin{matrix}21\\27\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\7&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\7&5\end{matrix}\right))\left(\begin{matrix}21\\27\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\7&5\end{matrix}\right))\left(\begin{matrix}21\\27\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-3\times 7\right)}&-\frac{-3}{2\times 5-\left(-3\times 7\right)}\\-\frac{7}{2\times 5-\left(-3\times 7\right)}&\frac{2}{2\times 5-\left(-3\times 7\right)}\end{matrix}\right)\left(\begin{matrix}21\\27\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}&\frac{3}{31}\\-\frac{7}{31}&\frac{2}{31}\end{matrix}\right)\left(\begin{matrix}21\\27\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}\times 21+\frac{3}{31}\times 27\\-\frac{7}{31}\times 21+\frac{2}{31}\times 27\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=-3
Tangohia ngā huānga poukapa x me y.
2x-15=3y+6
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y+2.
2x-15-3y=6
Tangohia te 3y mai i ngā taha e rua.
2x-3y=6+15
Me tāpiri te 15 ki ngā taha e rua.
2x-3y=21
Tāpirihia te 6 ki te 15, ka 21.
7x-28=-1-5y
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te x-4.
7x-28+5y=-1
Me tāpiri te 5y ki ngā taha e rua.
7x+5y=-1+28
Me tāpiri te 28 ki ngā taha e rua.
7x+5y=27
Tāpirihia te -1 ki te 28, ka 27.
2x-3y=21,7x+5y=27
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 2x+7\left(-3\right)y=7\times 21,2\times 7x+2\times 5y=2\times 27
Kia ōrite ai a 2x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
14x-21y=147,14x+10y=54
Whakarūnātia.
14x-14x-21y-10y=147-54
Me tango 14x+10y=54 mai i 14x-21y=147 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-21y-10y=147-54
Tāpiri 14x ki te -14x. Ka whakakore atu ngā kupu 14x me -14x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-31y=147-54
Tāpiri -21y ki te -10y.
-31y=93
Tāpiri 147 ki te -54.
y=-3
Whakawehea ngā taha e rua ki te -31.
7x+5\left(-3\right)=27
Whakaurua te -3 mō y ki 7x+5y=27. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x-15=27
Whakareatia 5 ki te -3.
7x=42
Me tāpiri 15 ki ngā taha e rua o te whārite.
x=6
Whakawehea ngā taha e rua ki te 7.
x=6,y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}