Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+y-6=0,2x+2y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y-6=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x+y=6
Me tāpiri 6 ki ngā taha e rua o te whārite.
2x=-y+6
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+6\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+3
Whakareatia \frac{1}{2} ki te -y+6.
2\left(-\frac{1}{2}y+3\right)+2y=0
Whakakapia te -\frac{y}{2}+3 mō te x ki tērā atu whārite, 2x+2y=0.
-y+6+2y=0
Whakareatia 2 ki te -\frac{y}{2}+3.
y+6=0
Tāpiri -y ki te 2y.
y=-6
Me tango 6 mai i ngā taha e rua o te whārite.
x=-\frac{1}{2}\left(-6\right)+3
Whakaurua te -6 mō y ki x=-\frac{1}{2}y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3+3
Whakareatia -\frac{1}{2} ki te -6.
x=6
Tāpiri 3 ki te 3.
x=6,y=-6
Kua oti te pūnaha te whakatau.
2x+y-6=0,2x+2y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\2&2\end{matrix}\right))\left(\begin{matrix}2&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&2\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&2\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&2\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-2}&-\frac{1}{2\times 2-2}\\-\frac{2}{2\times 2-2}&\frac{2}{2\times 2-2}\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-\frac{1}{2}\\-1&1\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-6\end{matrix}\right)
Whakareatia ngā poukapa.
x=6,y=-6
Tangohia ngā huānga poukapa x me y.
2x+y-6=0,2x+2y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-2x+y-2y-6=0
Me tango 2x+2y=0 mai i 2x+y-6=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-2y-6=0
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y-6=0
Tāpiri y ki te -2y.
-y=6
Me tāpiri 6 ki ngā taha e rua o te whārite.
y=-6
Whakawehea ngā taha e rua ki te -1.
2x+2\left(-6\right)=0
Whakaurua te -6 mō y ki 2x+2y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-12=0
Whakareatia 2 ki te -6.
2x=12
Me tāpiri 12 ki ngā taha e rua o te whārite.
x=6
Whakawehea ngā taha e rua ki te 2.
x=6,y=-6
Kua oti te pūnaha te whakatau.