Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+y-1=0,x-y+4=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y-1=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x+y=1
Me tāpiri 1 ki ngā taha e rua o te whārite.
2x=-y+1
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+1\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+\frac{1}{2}
Whakareatia \frac{1}{2} ki te -y+1.
-\frac{1}{2}y+\frac{1}{2}-y+4=0
Whakakapia te \frac{-y+1}{2} mō te x ki tērā atu whārite, x-y+4=0.
-\frac{3}{2}y+\frac{1}{2}+4=0
Tāpiri -\frac{y}{2} ki te -y.
-\frac{3}{2}y+\frac{9}{2}=0
Tāpiri \frac{1}{2} ki te 4.
-\frac{3}{2}y=-\frac{9}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\times 3+\frac{1}{2}
Whakaurua te 3 mō y ki x=-\frac{1}{2}y+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-3+1}{2}
Whakareatia -\frac{1}{2} ki te 3.
x=-1
Tāpiri \frac{1}{2} ki te -\frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=3
Kua oti te pūnaha te whakatau.
2x+y-1=0,x-y+4=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}2&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-1}&-\frac{1}{2\left(-1\right)-1}\\-\frac{1}{2\left(-1\right)-1}&\frac{2}{2\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}+\frac{1}{3}\left(-4\right)\\\frac{1}{3}-\frac{2}{3}\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=3
Tangohia ngā huānga poukapa x me y.
2x+y-1=0,x-y+4=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+y-1=0,2x+2\left(-1\right)y+2\times 4=0
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+y-1=0,2x-2y+8=0
Whakarūnātia.
2x-2x+y+2y-1-8=0
Me tango 2x-2y+8=0 mai i 2x+y-1=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+2y-1-8=0
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y-1-8=0
Tāpiri y ki te 2y.
3y-9=0
Tāpiri -1 ki te -8.
3y=9
Me tāpiri 9 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te 3.
x-3+4=0
Whakaurua te 3 mō y ki x-y+4=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+1=0
Tāpiri -3 ki te 4.
x=-1
Me tango 1 mai i ngā taha e rua o te whārite.
x=-1,y=3
Kua oti te pūnaha te whakatau.