\left\{ \begin{array} { l } { 2 x + y = 7 } \\ { 2 y + z = 8 } \\ { 2 z + x = 9 } \end{array} \right.
Whakaoti mō x, y, z
x = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
y = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
z = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
Tohaina
Kua tāruatia ki te papatopenga
y=-2x+7
Me whakaoti te 2x+y=7 mō y.
2\left(-2x+7\right)+z=8
Whakakapia te -2x+7 mō te y i te whārite 2y+z=8.
x=\frac{3}{2}+\frac{1}{4}z z=-\frac{1}{2}x+\frac{9}{2}
Me whakaoti te whārite tuarua mō x me te whārite tuatoru mō z.
z=-\frac{1}{2}\left(\frac{3}{2}+\frac{1}{4}z\right)+\frac{9}{2}
Whakakapia te \frac{3}{2}+\frac{1}{4}z mō te x i te whārite z=-\frac{1}{2}x+\frac{9}{2}.
z=\frac{10}{3}
Me whakaoti te z=-\frac{1}{2}\left(\frac{3}{2}+\frac{1}{4}z\right)+\frac{9}{2} mō z.
x=\frac{3}{2}+\frac{1}{4}\times \frac{10}{3}
Whakakapia te \frac{10}{3} mō te z i te whārite x=\frac{3}{2}+\frac{1}{4}z.
x=\frac{7}{3}
Tātaitia te x i te x=\frac{3}{2}+\frac{1}{4}\times \frac{10}{3}.
y=-2\times \frac{7}{3}+7
Whakakapia te \frac{7}{3} mō te x i te whārite y=-2x+7.
y=\frac{7}{3}
Tātaitia te y i te y=-2\times \frac{7}{3}+7.
x=\frac{7}{3} y=\frac{7}{3} z=\frac{10}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}