\left\{ \begin{array} { l } { 2 x + y = 6 } \\ { 4 x - y = 7 } \end{array} \right.
Whakaoti mō x, y
x = \frac{13}{6} = 2\frac{1}{6} \approx 2.166666667
y = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+y=6,4x-y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y+6
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+6\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+3
Whakareatia \frac{1}{2} ki te -y+6.
4\left(-\frac{1}{2}y+3\right)-y=7
Whakakapia te -\frac{y}{2}+3 mō te x ki tērā atu whārite, 4x-y=7.
-2y+12-y=7
Whakareatia 4 ki te -\frac{y}{2}+3.
-3y+12=7
Tāpiri -2y ki te -y.
-3y=-5
Me tango 12 mai i ngā taha e rua o te whārite.
y=\frac{5}{3}
Whakawehea ngā taha e rua ki te -3.
x=-\frac{1}{2}\times \frac{5}{3}+3
Whakaurua te \frac{5}{3} mō y ki x=-\frac{1}{2}y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{5}{6}+3
Whakareatia -\frac{1}{2} ki te \frac{5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{13}{6}
Tāpiri 3 ki te -\frac{5}{6}.
x=\frac{13}{6},y=\frac{5}{3}
Kua oti te pūnaha te whakatau.
2x+y=6,4x-y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-4}&-\frac{1}{2\left(-1\right)-4}\\-\frac{4}{2\left(-1\right)-4}&\frac{2}{2\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}6\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}6\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 6+\frac{1}{6}\times 7\\\frac{2}{3}\times 6-\frac{1}{3}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{6}\\\frac{5}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{13}{6},y=\frac{5}{3}
Tangohia ngā huānga poukapa x me y.
2x+y=6,4x-y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x+4y=4\times 6,2\times 4x+2\left(-1\right)y=2\times 7
Kia ōrite ai a 2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x+4y=24,8x-2y=14
Whakarūnātia.
8x-8x+4y+2y=24-14
Me tango 8x-2y=14 mai i 8x+4y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y+2y=24-14
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6y=24-14
Tāpiri 4y ki te 2y.
6y=10
Tāpiri 24 ki te -14.
y=\frac{5}{3}
Whakawehea ngā taha e rua ki te 6.
4x-\frac{5}{3}=7
Whakaurua te \frac{5}{3} mō y ki 4x-y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=\frac{26}{3}
Me tāpiri \frac{5}{3} ki ngā taha e rua o te whārite.
x=\frac{13}{6}
Whakawehea ngā taha e rua ki te 4.
x=\frac{13}{6},y=\frac{5}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}