\left\{ \begin{array} { l } { 2 x + y = 5 } \\ { - x + 5 y = 3 } \end{array} \right.
Whakaoti mō x, y
x=2
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+y=5,-x+5y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y+5
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+5\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+\frac{5}{2}
Whakareatia \frac{1}{2} ki te -y+5.
-\left(-\frac{1}{2}y+\frac{5}{2}\right)+5y=3
Whakakapia te \frac{-y+5}{2} mō te x ki tērā atu whārite, -x+5y=3.
\frac{1}{2}y-\frac{5}{2}+5y=3
Whakareatia -1 ki te \frac{-y+5}{2}.
\frac{11}{2}y-\frac{5}{2}=3
Tāpiri \frac{y}{2} ki te 5y.
\frac{11}{2}y=\frac{11}{2}
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{-1+5}{2}
Whakaurua te 1 mō y ki x=-\frac{1}{2}y+\frac{5}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2
Tāpiri \frac{5}{2} ki te -\frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=1
Kua oti te pūnaha te whakatau.
2x+y=5,-x+5y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\-1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-1\right)}&-\frac{1}{2\times 5-\left(-1\right)}\\-\frac{-1}{2\times 5-\left(-1\right)}&\frac{2}{2\times 5-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}&-\frac{1}{11}\\\frac{1}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}\times 5-\frac{1}{11}\times 3\\\frac{1}{11}\times 5+\frac{2}{11}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=1
Tangohia ngā huānga poukapa x me y.
2x+y=5,-x+5y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-y=-5,2\left(-1\right)x+2\times 5y=2\times 3
Kia ōrite ai a 2x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-2x-y=-5,-2x+10y=6
Whakarūnātia.
-2x+2x-y-10y=-5-6
Me tango -2x+10y=6 mai i -2x-y=-5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y-10y=-5-6
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-11y=-5-6
Tāpiri -y ki te -10y.
-11y=-11
Tāpiri -5 ki te -6.
y=1
Whakawehea ngā taha e rua ki te -11.
-x+5=3
Whakaurua te 1 mō y ki -x+5y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x=-2
Me tango 5 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te -1.
x=2,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}