\left\{ \begin{array} { l } { 2 x + y = - 2 } \\ { 4 x + 5 y = 8 } \end{array} \right.
Whakaoti mō x, y
x=-3
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+y=-2,4x+5y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y-2
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y-2\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y-1
Whakareatia \frac{1}{2} ki te -y-2.
4\left(-\frac{1}{2}y-1\right)+5y=8
Whakakapia te -\frac{y}{2}-1 mō te x ki tērā atu whārite, 4x+5y=8.
-2y-4+5y=8
Whakareatia 4 ki te -\frac{y}{2}-1.
3y-4=8
Tāpiri -2y ki te 5y.
3y=12
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{2}\times 4-1
Whakaurua te 4 mō y ki x=-\frac{1}{2}y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2-1
Whakareatia -\frac{1}{2} ki te 4.
x=-3
Tāpiri -1 ki te -2.
x=-3,y=4
Kua oti te pūnaha te whakatau.
2x+y=-2,4x+5y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}2&1\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-4}&-\frac{1}{2\times 5-4}\\-\frac{4}{2\times 5-4}&\frac{2}{2\times 5-4}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}&-\frac{1}{6}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\left(-2\right)-\frac{1}{6}\times 8\\-\frac{2}{3}\left(-2\right)+\frac{1}{3}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=4
Tangohia ngā huānga poukapa x me y.
2x+y=-2,4x+5y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x+4y=4\left(-2\right),2\times 4x+2\times 5y=2\times 8
Kia ōrite ai a 2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x+4y=-8,8x+10y=16
Whakarūnātia.
8x-8x+4y-10y=-8-16
Me tango 8x+10y=16 mai i 8x+4y=-8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-10y=-8-16
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6y=-8-16
Tāpiri 4y ki te -10y.
-6y=-24
Tāpiri -8 ki te -16.
y=4
Whakawehea ngā taha e rua ki te -6.
4x+5\times 4=8
Whakaurua te 4 mō y ki 4x+5y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+20=8
Whakareatia 5 ki te 4.
4x=-12
Me tango 20 mai i ngā taha e rua o te whārite.
x=-3
Whakawehea ngā taha e rua ki te 4.
x=-3,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}