\left\{ \begin{array} { l } { 2 x + 9 y = 19 } \\ { 4 x + m y = 53 } \end{array} \right.
Whakaoti mō x, y
x=-\frac{477-19m}{2\left(m-18\right)}
y=\frac{15}{m-18}
m\neq 18
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+9y=19,4x+my=53
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+9y=19
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-9y+19
Me tango 9y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-9y+19\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{9}{2}y+\frac{19}{2}
Whakareatia \frac{1}{2} ki te -9y+19.
4\left(-\frac{9}{2}y+\frac{19}{2}\right)+my=53
Whakakapia te \frac{-9y+19}{2} mō te x ki tērā atu whārite, 4x+my=53.
-18y+38+my=53
Whakareatia 4 ki te \frac{-9y+19}{2}.
\left(m-18\right)y+38=53
Tāpiri -18y ki te my.
\left(m-18\right)y=15
Me tango 38 mai i ngā taha e rua o te whārite.
y=\frac{15}{m-18}
Whakawehea ngā taha e rua ki te -18+m.
x=-\frac{9}{2}\times \frac{15}{m-18}+\frac{19}{2}
Whakaurua te \frac{15}{-18+m} mō y ki x=-\frac{9}{2}y+\frac{19}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{135}{2\left(m-18\right)}+\frac{19}{2}
Whakareatia -\frac{9}{2} ki te \frac{15}{-18+m}.
x=\frac{19m-477}{2\left(m-18\right)}
Tāpiri \frac{19}{2} ki te -\frac{135}{2\left(-18+m\right)}.
x=\frac{19m-477}{2\left(m-18\right)},y=\frac{15}{m-18}
Kua oti te pūnaha te whakatau.
2x+9y=19,4x+my=53
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&9\\4&m\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\53\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&9\\4&m\end{matrix}\right))\left(\begin{matrix}2&9\\4&m\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&9\\4&m\end{matrix}\right))\left(\begin{matrix}19\\53\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&9\\4&m\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&9\\4&m\end{matrix}\right))\left(\begin{matrix}19\\53\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&9\\4&m\end{matrix}\right))\left(\begin{matrix}19\\53\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{2m-9\times 4}&-\frac{9}{2m-9\times 4}\\-\frac{4}{2m-9\times 4}&\frac{2}{2m-9\times 4}\end{matrix}\right)\left(\begin{matrix}19\\53\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{2\left(m-18\right)}&-\frac{9}{2\left(m-18\right)}\\-\frac{2}{m-18}&\frac{1}{m-18}\end{matrix}\right)\left(\begin{matrix}19\\53\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{m}{2\left(m-18\right)}\times 19+\left(-\frac{9}{2\left(m-18\right)}\right)\times 53\\\left(-\frac{2}{m-18}\right)\times 19+\frac{1}{m-18}\times 53\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19m-477}{2\left(m-18\right)}\\\frac{15}{m-18}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{19m-477}{2\left(m-18\right)},y=\frac{15}{m-18}
Tangohia ngā huānga poukapa x me y.
2x+9y=19,4x+my=53
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x+4\times 9y=4\times 19,2\times 4x+2my=2\times 53
Kia ōrite ai a 2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x+36y=76,8x+2my=106
Whakarūnātia.
8x-8x+36y+\left(-2m\right)y=76-106
Me tango 8x+2my=106 mai i 8x+36y=76 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
36y+\left(-2m\right)y=76-106
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(36-2m\right)y=76-106
Tāpiri 36y ki te -2my.
\left(36-2m\right)y=-30
Tāpiri 76 ki te -106.
y=-\frac{15}{18-m}
Whakawehea ngā taha e rua ki te 36-2m.
4x+m\left(-\frac{15}{18-m}\right)=53
Whakaurua te -\frac{15}{18-m} mō y ki 4x+my=53. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-\frac{15m}{18-m}=53
Whakareatia m ki te -\frac{15}{18-m}.
4x=\frac{2\left(477-19m\right)}{18-m}
Me tāpiri \frac{15m}{18-m} ki ngā taha e rua o te whārite.
x=\frac{477-19m}{2\left(18-m\right)}
Whakawehea ngā taha e rua ki te 4.
x=\frac{477-19m}{2\left(18-m\right)},y=-\frac{15}{18-m}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}