\left\{ \begin{array} { l } { 2 x + 8 y = 16 } \\ { 11 - x + 2 y = 0 } \end{array} \right.
Whakaoti mō x, y
x=10
y=-\frac{1}{2}=-0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+8y=16,-x+2y+11=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+8y=16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-8y+16
Me tango 8y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-8y+16\right)
Whakawehea ngā taha e rua ki te 2.
x=-4y+8
Whakareatia \frac{1}{2} ki te -8y+16.
-\left(-4y+8\right)+2y+11=0
Whakakapia te -4y+8 mō te x ki tērā atu whārite, -x+2y+11=0.
4y-8+2y+11=0
Whakareatia -1 ki te -4y+8.
6y-8+11=0
Tāpiri 4y ki te 2y.
6y+3=0
Tāpiri -8 ki te 11.
6y=-3
Me tango 3 mai i ngā taha e rua o te whārite.
y=-\frac{1}{2}
Whakawehea ngā taha e rua ki te 6.
x=-4\left(-\frac{1}{2}\right)+8
Whakaurua te -\frac{1}{2} mō y ki x=-4y+8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2+8
Whakareatia -4 ki te -\frac{1}{2}.
x=10
Tāpiri 8 ki te 2.
x=10,y=-\frac{1}{2}
Kua oti te pūnaha te whakatau.
2x+8y=16,-x+2y+11=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&8\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\-11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}2&8\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&8\\-1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-8\left(-1\right)}&-\frac{8}{2\times 2-8\left(-1\right)}\\-\frac{-1}{2\times 2-8\left(-1\right)}&\frac{2}{2\times 2-8\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}16\\-11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{2}{3}\\\frac{1}{12}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}16\\-11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 16-\frac{2}{3}\left(-11\right)\\\frac{1}{12}\times 16+\frac{1}{6}\left(-11\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-\frac{1}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=10,y=-\frac{1}{2}
Tangohia ngā huānga poukapa x me y.
2x+8y=16,-x+2y+11=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-8y=-16,2\left(-1\right)x+2\times 2y+2\times 11=0
Kia ōrite ai a 2x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-2x-8y=-16,-2x+4y+22=0
Whakarūnātia.
-2x+2x-8y-4y-22=-16
Me tango -2x+4y+22=0 mai i -2x-8y=-16 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y-4y-22=-16
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-12y-22=-16
Tāpiri -8y ki te -4y.
-12y=6
Me tāpiri 22 ki ngā taha e rua o te whārite.
y=-\frac{1}{2}
Whakawehea ngā taha e rua ki te -12.
-x+2\left(-\frac{1}{2}\right)+11=0
Whakaurua te -\frac{1}{2} mō y ki -x+2y+11=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x-1+11=0
Whakareatia 2 ki te -\frac{1}{2}.
-x+10=0
Tāpiri -1 ki te 11.
-x=-10
Me tango 10 mai i ngā taha e rua o te whārite.
x=10
Whakawehea ngā taha e rua ki te -1.
x=10,y=-\frac{1}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}