\left\{ \begin{array} { l } { 2 x + 7 y = 15 } \\ { 3 x - 5 y = 23 } \end{array} \right.
Whakaoti mō x, y
x = \frac{236}{31} = 7\frac{19}{31} \approx 7.612903226
y=-\frac{1}{31}\approx -0.032258065
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+7y=15,3x-5y=23
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+7y=15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-7y+15
Me tango 7y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-7y+15\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{7}{2}y+\frac{15}{2}
Whakareatia \frac{1}{2} ki te -7y+15.
3\left(-\frac{7}{2}y+\frac{15}{2}\right)-5y=23
Whakakapia te \frac{-7y+15}{2} mō te x ki tērā atu whārite, 3x-5y=23.
-\frac{21}{2}y+\frac{45}{2}-5y=23
Whakareatia 3 ki te \frac{-7y+15}{2}.
-\frac{31}{2}y+\frac{45}{2}=23
Tāpiri -\frac{21y}{2} ki te -5y.
-\frac{31}{2}y=\frac{1}{2}
Me tango \frac{45}{2} mai i ngā taha e rua o te whārite.
y=-\frac{1}{31}
Whakawehea ngā taha e rua o te whārite ki te -\frac{31}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{7}{2}\left(-\frac{1}{31}\right)+\frac{15}{2}
Whakaurua te -\frac{1}{31} mō y ki x=-\frac{7}{2}y+\frac{15}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{7}{62}+\frac{15}{2}
Whakareatia -\frac{7}{2} ki te -\frac{1}{31} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{236}{31}
Tāpiri \frac{15}{2} ki te \frac{7}{62} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{236}{31},y=-\frac{1}{31}
Kua oti te pūnaha te whakatau.
2x+7y=15,3x-5y=23
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&7\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\23\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&7\\3&-5\end{matrix}\right))\left(\begin{matrix}2&7\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\3&-5\end{matrix}\right))\left(\begin{matrix}15\\23\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&7\\3&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\3&-5\end{matrix}\right))\left(\begin{matrix}15\\23\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\3&-5\end{matrix}\right))\left(\begin{matrix}15\\23\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-7\times 3}&-\frac{7}{2\left(-5\right)-7\times 3}\\-\frac{3}{2\left(-5\right)-7\times 3}&\frac{2}{2\left(-5\right)-7\times 3}\end{matrix}\right)\left(\begin{matrix}15\\23\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}&\frac{7}{31}\\\frac{3}{31}&-\frac{2}{31}\end{matrix}\right)\left(\begin{matrix}15\\23\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}\times 15+\frac{7}{31}\times 23\\\frac{3}{31}\times 15-\frac{2}{31}\times 23\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{236}{31}\\-\frac{1}{31}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{236}{31},y=-\frac{1}{31}
Tangohia ngā huānga poukapa x me y.
2x+7y=15,3x-5y=23
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\times 7y=3\times 15,2\times 3x+2\left(-5\right)y=2\times 23
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+21y=45,6x-10y=46
Whakarūnātia.
6x-6x+21y+10y=45-46
Me tango 6x-10y=46 mai i 6x+21y=45 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
21y+10y=45-46
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
31y=45-46
Tāpiri 21y ki te 10y.
31y=-1
Tāpiri 45 ki te -46.
y=-\frac{1}{31}
Whakawehea ngā taha e rua ki te 31.
3x-5\left(-\frac{1}{31}\right)=23
Whakaurua te -\frac{1}{31} mō y ki 3x-5y=23. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+\frac{5}{31}=23
Whakareatia -5 ki te -\frac{1}{31}.
3x=\frac{708}{31}
Me tango \frac{5}{31} mai i ngā taha e rua o te whārite.
x=\frac{236}{31}
Whakawehea ngā taha e rua ki te 3.
x=\frac{236}{31},y=-\frac{1}{31}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}