Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+5y=1,4x-3y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+5y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-5y+1
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-5y+1\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{5}{2}y+\frac{1}{2}
Whakareatia \frac{1}{2} ki te -5y+1.
4\left(-\frac{5}{2}y+\frac{1}{2}\right)-3y=6
Whakakapia te \frac{-5y+1}{2} mō te x ki tērā atu whārite, 4x-3y=6.
-10y+2-3y=6
Whakareatia 4 ki te \frac{-5y+1}{2}.
-13y+2=6
Tāpiri -10y ki te -3y.
-13y=4
Me tango 2 mai i ngā taha e rua o te whārite.
y=-\frac{4}{13}
Whakawehea ngā taha e rua ki te -13.
x=-\frac{5}{2}\left(-\frac{4}{13}\right)+\frac{1}{2}
Whakaurua te -\frac{4}{13} mō y ki x=-\frac{5}{2}y+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{10}{13}+\frac{1}{2}
Whakareatia -\frac{5}{2} ki te -\frac{4}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{33}{26}
Tāpiri \frac{1}{2} ki te \frac{10}{13} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{33}{26},y=-\frac{4}{13}
Kua oti te pūnaha te whakatau.
2x+5y=1,4x-3y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&5\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&5\\4&-3\end{matrix}\right))\left(\begin{matrix}2&5\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\4&-3\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&5\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\4&-3\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\4&-3\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-5\times 4}&-\frac{5}{2\left(-3\right)-5\times 4}\\-\frac{4}{2\left(-3\right)-5\times 4}&\frac{2}{2\left(-3\right)-5\times 4}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{26}&\frac{5}{26}\\\frac{2}{13}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{26}+\frac{5}{26}\times 6\\\frac{2}{13}-\frac{1}{13}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{33}{26}\\-\frac{4}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{33}{26},y=-\frac{4}{13}
Tangohia ngā huānga poukapa x me y.
2x+5y=1,4x-3y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x+4\times 5y=4,2\times 4x+2\left(-3\right)y=2\times 6
Kia ōrite ai a 2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x+20y=4,8x-6y=12
Whakarūnātia.
8x-8x+20y+6y=4-12
Me tango 8x-6y=12 mai i 8x+20y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y+6y=4-12
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
26y=4-12
Tāpiri 20y ki te 6y.
26y=-8
Tāpiri 4 ki te -12.
y=-\frac{4}{13}
Whakawehea ngā taha e rua ki te 26.
4x-3\left(-\frac{4}{13}\right)=6
Whakaurua te -\frac{4}{13} mō y ki 4x-3y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+\frac{12}{13}=6
Whakareatia -3 ki te -\frac{4}{13}.
4x=\frac{66}{13}
Me tango \frac{12}{13} mai i ngā taha e rua o te whārite.
x=\frac{33}{26}
Whakawehea ngā taha e rua ki te 4.
x=\frac{33}{26},y=-\frac{4}{13}
Kua oti te pūnaha te whakatau.