Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+5y=1,-2x+y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+5y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-5y+1
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-5y+1\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{5}{2}y+\frac{1}{2}
Whakareatia \frac{1}{2} ki te -5y+1.
-2\left(-\frac{5}{2}y+\frac{1}{2}\right)+y=5
Whakakapia te \frac{-5y+1}{2} mō te x ki tērā atu whārite, -2x+y=5.
5y-1+y=5
Whakareatia -2 ki te \frac{-5y+1}{2}.
6y-1=5
Tāpiri 5y ki te y.
6y=6
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te 6.
x=\frac{-5+1}{2}
Whakaurua te 1 mō y ki x=-\frac{5}{2}y+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2
Tāpiri \frac{1}{2} ki te -\frac{5}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-2,y=1
Kua oti te pūnaha te whakatau.
2x+5y=1,-2x+y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&5\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&5\\-2&1\end{matrix}\right))\left(\begin{matrix}2&5\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&5\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-5\left(-2\right)}&-\frac{5}{2-5\left(-2\right)}\\-\frac{-2}{2-5\left(-2\right)}&\frac{2}{2-5\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&-\frac{5}{12}\\\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}-\frac{5}{12}\times 5\\\frac{1}{6}+\frac{1}{6}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=1
Tangohia ngā huānga poukapa x me y.
2x+5y=1,-2x+y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 2x-2\times 5y=-2,2\left(-2\right)x+2y=2\times 5
Kia ōrite ai a 2x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-4x-10y=-2,-4x+2y=10
Whakarūnātia.
-4x+4x-10y-2y=-2-10
Me tango -4x+2y=10 mai i -4x-10y=-2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-10y-2y=-2-10
Tāpiri -4x ki te 4x. Ka whakakore atu ngā kupu -4x me 4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-12y=-2-10
Tāpiri -10y ki te -2y.
-12y=-12
Tāpiri -2 ki te -10.
y=1
Whakawehea ngā taha e rua ki te -12.
-2x+1=5
Whakaurua te 1 mō y ki -2x+y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x=4
Me tango 1 mai i ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te -2.
x=-2,y=1
Kua oti te pūnaha te whakatau.