Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+4y=12,5x-8y=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+4y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-4y+12
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-4y+12\right)
Whakawehea ngā taha e rua ki te 2.
x=-2y+6
Whakareatia \frac{1}{2} ki te -4y+12.
5\left(-2y+6\right)-8y=16
Whakakapia te -2y+6 mō te x ki tērā atu whārite, 5x-8y=16.
-10y+30-8y=16
Whakareatia 5 ki te -2y+6.
-18y+30=16
Tāpiri -10y ki te -8y.
-18y=-14
Me tango 30 mai i ngā taha e rua o te whārite.
y=\frac{7}{9}
Whakawehea ngā taha e rua ki te -18.
x=-2\times \frac{7}{9}+6
Whakaurua te \frac{7}{9} mō y ki x=-2y+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{14}{9}+6
Whakareatia -2 ki te \frac{7}{9}.
x=\frac{40}{9}
Tāpiri 6 ki te -\frac{14}{9}.
x=\frac{40}{9},y=\frac{7}{9}
Kua oti te pūnaha te whakatau.
2x+4y=12,5x-8y=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&4\\5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}2&4\\5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&4\\5&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\5&-8\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{2\left(-8\right)-4\times 5}&-\frac{4}{2\left(-8\right)-4\times 5}\\-\frac{5}{2\left(-8\right)-4\times 5}&\frac{2}{2\left(-8\right)-4\times 5}\end{matrix}\right)\left(\begin{matrix}12\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}&\frac{1}{9}\\\frac{5}{36}&-\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}12\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}\times 12+\frac{1}{9}\times 16\\\frac{5}{36}\times 12-\frac{1}{18}\times 16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{40}{9}\\\frac{7}{9}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{40}{9},y=\frac{7}{9}
Tangohia ngā huānga poukapa x me y.
2x+4y=12,5x-8y=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 2x+5\times 4y=5\times 12,2\times 5x+2\left(-8\right)y=2\times 16
Kia ōrite ai a 2x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
10x+20y=60,10x-16y=32
Whakarūnātia.
10x-10x+20y+16y=60-32
Me tango 10x-16y=32 mai i 10x+20y=60 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y+16y=60-32
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
36y=60-32
Tāpiri 20y ki te 16y.
36y=28
Tāpiri 60 ki te -32.
y=\frac{7}{9}
Whakawehea ngā taha e rua ki te 36.
5x-8\times \frac{7}{9}=16
Whakaurua te \frac{7}{9} mō y ki 5x-8y=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-\frac{56}{9}=16
Whakareatia -8 ki te \frac{7}{9}.
5x=\frac{200}{9}
Me tāpiri \frac{56}{9} ki ngā taha e rua o te whārite.
x=\frac{40}{9}
Whakawehea ngā taha e rua ki te 5.
x=\frac{40}{9},y=\frac{7}{9}
Kua oti te pūnaha te whakatau.