Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3y-4=0,x+3y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y-4=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x+3y=4
Me tāpiri 4 ki ngā taha e rua o te whārite.
2x=-3y+4
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+4\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+2
Whakareatia \frac{1}{2} ki te -3y+4.
-\frac{3}{2}y+2+3y=5
Whakakapia te -\frac{3y}{2}+2 mō te x ki tērā atu whārite, x+3y=5.
\frac{3}{2}y+2=5
Tāpiri -\frac{3y}{2} ki te 3y.
\frac{3}{2}y=3
Me tango 2 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\times 2+2
Whakaurua te 2 mō y ki x=-\frac{3}{2}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-3+2
Whakareatia -\frac{3}{2} ki te 2.
x=-1
Tāpiri 2 ki te -3.
x=-1,y=2
Kua oti te pūnaha te whakatau.
2x+3y-4=0,x+3y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}2&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3}&-\frac{3}{2\times 3-3}\\-\frac{1}{2\times 3-3}&\frac{2}{2\times 3-3}\end{matrix}\right)\left(\begin{matrix}4\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}4\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4-5\\-\frac{1}{3}\times 4+\frac{2}{3}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=2
Tangohia ngā huānga poukapa x me y.
2x+3y-4=0,x+3y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-x+3y-3y-4=-5
Me tango x+3y=5 mai i 2x+3y-4=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2x-x-4=-5
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
x-4=-5
Tāpiri 2x ki te -x.
x=-1
Me tāpiri 4 ki ngā taha e rua o te whārite.
-1+3y=5
Whakaurua te -1 mō x ki x+3y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
3y=6
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=-1,y=2
Kua oti te pūnaha te whakatau.