Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3y=780,5x+4y=1320
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=780
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+780
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+780\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+390
Whakareatia \frac{1}{2} ki te -3y+780.
5\left(-\frac{3}{2}y+390\right)+4y=1320
Whakakapia te -\frac{3y}{2}+390 mō te x ki tērā atu whārite, 5x+4y=1320.
-\frac{15}{2}y+1950+4y=1320
Whakareatia 5 ki te -\frac{3y}{2}+390.
-\frac{7}{2}y+1950=1320
Tāpiri -\frac{15y}{2} ki te 4y.
-\frac{7}{2}y=-630
Me tango 1950 mai i ngā taha e rua o te whārite.
y=180
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\times 180+390
Whakaurua te 180 mō y ki x=-\frac{3}{2}y+390. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-270+390
Whakareatia -\frac{3}{2} ki te 180.
x=120
Tāpiri 390 ki te -270.
x=120,y=180
Kua oti te pūnaha te whakatau.
2x+3y=780,5x+4y=1320
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}780\\1320\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}780\\1320\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\5&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}780\\1320\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}780\\1320\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 5}&-\frac{3}{2\times 4-3\times 5}\\-\frac{5}{2\times 4-3\times 5}&\frac{2}{2\times 4-3\times 5}\end{matrix}\right)\left(\begin{matrix}780\\1320\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}&\frac{3}{7}\\\frac{5}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}780\\1320\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}\times 780+\frac{3}{7}\times 1320\\\frac{5}{7}\times 780-\frac{2}{7}\times 1320\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}120\\180\end{matrix}\right)
Mahia ngā tātaitanga.
x=120,y=180
Tangohia ngā huānga poukapa x me y.
2x+3y=780,5x+4y=1320
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 2x+5\times 3y=5\times 780,2\times 5x+2\times 4y=2\times 1320
Kia ōrite ai a 2x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
10x+15y=3900,10x+8y=2640
Whakarūnātia.
10x-10x+15y-8y=3900-2640
Me tango 10x+8y=2640 mai i 10x+15y=3900 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
15y-8y=3900-2640
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7y=3900-2640
Tāpiri 15y ki te -8y.
7y=1260
Tāpiri 3900 ki te -2640.
y=180
Whakawehea ngā taha e rua ki te 7.
5x+4\times 180=1320
Whakaurua te 180 mō y ki 5x+4y=1320. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x+720=1320
Whakareatia 4 ki te 180.
5x=600
Me tango 720 mai i ngā taha e rua o te whārite.
x=120
Whakawehea ngā taha e rua ki te 5.
x=120,y=180
Kua oti te pūnaha te whakatau.