\left\{ \begin{array} { l } { 2 x + 3 y = 23 } \\ { x - 2 y = - 13 } \end{array} \right.
Whakaoti mō x, y
x=1
y=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+3y=23,x-2y=-13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=23
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+23
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+23\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+\frac{23}{2}
Whakareatia \frac{1}{2} ki te -3y+23.
-\frac{3}{2}y+\frac{23}{2}-2y=-13
Whakakapia te \frac{-3y+23}{2} mō te x ki tērā atu whārite, x-2y=-13.
-\frac{7}{2}y+\frac{23}{2}=-13
Tāpiri -\frac{3y}{2} ki te -2y.
-\frac{7}{2}y=-\frac{49}{2}
Me tango \frac{23}{2} mai i ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\times 7+\frac{23}{2}
Whakaurua te 7 mō y ki x=-\frac{3}{2}y+\frac{23}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-21+23}{2}
Whakareatia -\frac{3}{2} ki te 7.
x=1
Tāpiri \frac{23}{2} ki te -\frac{21}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=7
Kua oti te pūnaha te whakatau.
2x+3y=23,x-2y=-13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}23\\-13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}2&3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}23\\-13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}23\\-13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}23\\-13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-3}&-\frac{3}{2\left(-2\right)-3}\\-\frac{1}{2\left(-2\right)-3}&\frac{2}{2\left(-2\right)-3}\end{matrix}\right)\left(\begin{matrix}23\\-13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{3}{7}\\\frac{1}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}23\\-13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 23+\frac{3}{7}\left(-13\right)\\\frac{1}{7}\times 23-\frac{2}{7}\left(-13\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=7
Tangohia ngā huānga poukapa x me y.
2x+3y=23,x-2y=-13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+3y=23,2x+2\left(-2\right)y=2\left(-13\right)
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+3y=23,2x-4y=-26
Whakarūnātia.
2x-2x+3y+4y=23+26
Me tango 2x-4y=-26 mai i 2x+3y=23 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+4y=23+26
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7y=23+26
Tāpiri 3y ki te 4y.
7y=49
Tāpiri 23 ki te 26.
y=7
Whakawehea ngā taha e rua ki te 7.
x-2\times 7=-13
Whakaurua te 7 mō y ki x-2y=-13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-14=-13
Whakareatia -2 ki te 7.
x=1
Me tāpiri 14 ki ngā taha e rua o te whārite.
x=1,y=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}