\left\{ \begin{array} { l } { 2 x + 3 y = 13 } \\ { 6 x + y = 11 } \end{array} \right.
Whakaoti mō x, y
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
y = \frac{7}{2} = 3\frac{1}{2} = 3.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+3y=13,6x+y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+13
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+13\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+\frac{13}{2}
Whakareatia \frac{1}{2} ki te -3y+13.
6\left(-\frac{3}{2}y+\frac{13}{2}\right)+y=11
Whakakapia te \frac{-3y+13}{2} mō te x ki tērā atu whārite, 6x+y=11.
-9y+39+y=11
Whakareatia 6 ki te \frac{-3y+13}{2}.
-8y+39=11
Tāpiri -9y ki te y.
-8y=-28
Me tango 39 mai i ngā taha e rua o te whārite.
y=\frac{7}{2}
Whakawehea ngā taha e rua ki te -8.
x=-\frac{3}{2}\times \frac{7}{2}+\frac{13}{2}
Whakaurua te \frac{7}{2} mō y ki x=-\frac{3}{2}y+\frac{13}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{21}{4}+\frac{13}{2}
Whakareatia -\frac{3}{2} ki te \frac{7}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{5}{4}
Tāpiri \frac{13}{2} ki te -\frac{21}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{5}{4},y=\frac{7}{2}
Kua oti te pūnaha te whakatau.
2x+3y=13,6x+y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}2&3\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\6&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\times 6}&-\frac{3}{2-3\times 6}\\-\frac{6}{2-3\times 6}&\frac{2}{2-3\times 6}\end{matrix}\right)\left(\begin{matrix}13\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{16}&\frac{3}{16}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}13\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{16}\times 13+\frac{3}{16}\times 11\\\frac{3}{8}\times 13-\frac{1}{8}\times 11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}\\\frac{7}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{4},y=\frac{7}{2}
Tangohia ngā huānga poukapa x me y.
2x+3y=13,6x+y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 2x+6\times 3y=6\times 13,2\times 6x+2y=2\times 11
Kia ōrite ai a 2x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
12x+18y=78,12x+2y=22
Whakarūnātia.
12x-12x+18y-2y=78-22
Me tango 12x+2y=22 mai i 12x+18y=78 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
18y-2y=78-22
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
16y=78-22
Tāpiri 18y ki te -2y.
16y=56
Tāpiri 78 ki te -22.
y=\frac{7}{2}
Whakawehea ngā taha e rua ki te 16.
6x+\frac{7}{2}=11
Whakaurua te \frac{7}{2} mō y ki 6x+y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x=\frac{15}{2}
Me tango \frac{7}{2} mai i ngā taha e rua o te whārite.
x=\frac{5}{4}
Whakawehea ngā taha e rua ki te 6.
x=\frac{5}{4},y=\frac{7}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}