\left\{ \begin{array} { l } { 2 x + 3 y = 1 } \\ { 3 x + 4 y = 3 } \end{array} \right.
Whakaoti mō x, y
x=5
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+3y=1,3x+4y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+1
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+1\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+\frac{1}{2}
Whakareatia \frac{1}{2} ki te -3y+1.
3\left(-\frac{3}{2}y+\frac{1}{2}\right)+4y=3
Whakakapia te \frac{-3y+1}{2} mō te x ki tērā atu whārite, 3x+4y=3.
-\frac{9}{2}y+\frac{3}{2}+4y=3
Whakareatia 3 ki te \frac{-3y+1}{2}.
-\frac{1}{2}y+\frac{3}{2}=3
Tāpiri -\frac{9y}{2} ki te 4y.
-\frac{1}{2}y=\frac{3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
y=-3
Me whakarea ngā taha e rua ki te -2.
x=-\frac{3}{2}\left(-3\right)+\frac{1}{2}
Whakaurua te -3 mō y ki x=-\frac{3}{2}y+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{9+1}{2}
Whakareatia -\frac{3}{2} ki te -3.
x=5
Tāpiri \frac{1}{2} ki te \frac{9}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=5,y=-3
Kua oti te pūnaha te whakatau.
2x+3y=1,3x+4y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}2&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&4\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 3}&-\frac{3}{2\times 4-3\times 3}\\-\frac{3}{2\times 4-3\times 3}&\frac{2}{2\times 4-3\times 3}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4&3\\3&-2\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4+3\times 3\\3-2\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=-3
Tangohia ngā huānga poukapa x me y.
2x+3y=1,3x+4y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\times 3y=3,2\times 3x+2\times 4y=2\times 3
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+9y=3,6x+8y=6
Whakarūnātia.
6x-6x+9y-8y=3-6
Me tango 6x+8y=6 mai i 6x+9y=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y-8y=3-6
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=3-6
Tāpiri 9y ki te -8y.
y=-3
Tāpiri 3 ki te -6.
3x+4\left(-3\right)=3
Whakaurua te -3 mō y ki 3x+4y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-12=3
Whakareatia 4 ki te -3.
3x=15
Me tāpiri 12 ki ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua ki te 3.
x=5,y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}