\left\{ \begin{array} { l } { 2 x + 3 y + 2 z = 1 } \\ { 5 x + 3 y - 2 z = 2 } \\ { 4 x - y + 7 z = 3 } \end{array} \right.
Whakaoti mō x, y, z
x=\frac{63}{125}=0.504
y=-\frac{11}{125}=-0.088
z=\frac{16}{125}=0.128
Tohaina
Kua tāruatia ki te papatopenga
4x-y+7z=3 5x+3y-2z=2 2x+3y+2z=1
Me raupapa anō ngā whārite.
y=4x+7z-3
Me whakaoti te 4x-y+7z=3 mō y.
5x+3\left(4x+7z-3\right)-2z=2 2x+3\left(4x+7z-3\right)+2z=1
Whakakapia te 4x+7z-3 mō te y i te whārite tuarua me te tuatoru.
x=-\frac{19}{17}z+\frac{11}{17} z=\frac{10}{23}-\frac{14}{23}x
Me whakaoti ēnei whārite mō x me z takitahi.
z=\frac{10}{23}-\frac{14}{23}\left(-\frac{19}{17}z+\frac{11}{17}\right)
Whakakapia te -\frac{19}{17}z+\frac{11}{17} mō te x i te whārite z=\frac{10}{23}-\frac{14}{23}x.
z=\frac{16}{125}
Me whakaoti te z=\frac{10}{23}-\frac{14}{23}\left(-\frac{19}{17}z+\frac{11}{17}\right) mō z.
x=-\frac{19}{17}\times \frac{16}{125}+\frac{11}{17}
Whakakapia te \frac{16}{125} mō te z i te whārite x=-\frac{19}{17}z+\frac{11}{17}.
x=\frac{63}{125}
Tātaitia te x i te x=-\frac{19}{17}\times \frac{16}{125}+\frac{11}{17}.
y=4\times \frac{63}{125}+7\times \frac{16}{125}-3
Whakakapia te \frac{63}{125} mō te x me te \frac{16}{125} mō z i te whārite y=4x+7z-3.
y=-\frac{11}{125}
Tātaitia te y i te y=4\times \frac{63}{125}+7\times \frac{16}{125}-3.
x=\frac{63}{125} y=-\frac{11}{125} z=\frac{16}{125}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}