Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+14y=-28,-4x-14y=28
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+14y=-28
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-14y-28
Me tango 14y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-14y-28\right)
Whakawehea ngā taha e rua ki te 2.
x=-7y-14
Whakareatia \frac{1}{2} ki te -14y-28.
-4\left(-7y-14\right)-14y=28
Whakakapia te -7y-14 mō te x ki tērā atu whārite, -4x-14y=28.
28y+56-14y=28
Whakareatia -4 ki te -7y-14.
14y+56=28
Tāpiri 28y ki te -14y.
14y=-28
Me tango 56 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te 14.
x=-7\left(-2\right)-14
Whakaurua te -2 mō y ki x=-7y-14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=14-14
Whakareatia -7 ki te -2.
x=0
Tāpiri -14 ki te 14.
x=0,y=-2
Kua oti te pūnaha te whakatau.
2x+14y=-28,-4x-14y=28
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-28\\28\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&14\\-4&-14\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&14\\-4&-14\end{matrix}\right))\left(\begin{matrix}-28\\28\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{14}{2\left(-14\right)-14\left(-4\right)}&-\frac{14}{2\left(-14\right)-14\left(-4\right)}\\-\frac{-4}{2\left(-14\right)-14\left(-4\right)}&\frac{2}{2\left(-14\right)-14\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-28\\28\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&-\frac{1}{2}\\\frac{1}{7}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}-28\\28\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-28\right)-\frac{1}{2}\times 28\\\frac{1}{7}\left(-28\right)+\frac{1}{14}\times 28\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=-2
Tangohia ngā huānga poukapa x me y.
2x+14y=-28,-4x-14y=28
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4\times 2x-4\times 14y=-4\left(-28\right),2\left(-4\right)x+2\left(-14\right)y=2\times 28
Kia ōrite ai a 2x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-8x-56y=112,-8x-28y=56
Whakarūnātia.
-8x+8x-56y+28y=112-56
Me tango -8x-28y=56 mai i -8x-56y=112 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-56y+28y=112-56
Tāpiri -8x ki te 8x. Ka whakakore atu ngā kupu -8x me 8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-28y=112-56
Tāpiri -56y ki te 28y.
-28y=56
Tāpiri 112 ki te -56.
y=-2
Whakawehea ngā taha e rua ki te -28.
-4x-14\left(-2\right)=28
Whakaurua te -2 mō y ki -4x-14y=28. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x+28=28
Whakareatia -14 ki te -2.
-4x=0
Me tango 28 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te -4.
x=0,y=-2
Kua oti te pūnaha te whakatau.