\left\{ \begin{array} { l } { 2 x + 10 = 4 y - 16 x } \\ { 10 y - 10 x = 11 y - 12 x } \end{array} \right.
Whakaoti mō x, y
x=-1
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+10-4y=-16x
Whakaarohia te whārite tuatahi. Tangohia te 4y mai i ngā taha e rua.
2x+10-4y+16x=0
Me tāpiri te 16x ki ngā taha e rua.
18x+10-4y=0
Pahekotia te 2x me 16x, ka 18x.
18x-4y=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
10y-10x-11y=-12x
Whakaarohia te whārite tuarua. Tangohia te 11y mai i ngā taha e rua.
-y-10x=-12x
Pahekotia te 10y me -11y, ka -y.
-y-10x+12x=0
Me tāpiri te 12x ki ngā taha e rua.
-y+2x=0
Pahekotia te -10x me 12x, ka 2x.
18x-4y=-10,2x-y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
18x-4y=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
18x=4y-10
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{18}\left(4y-10\right)
Whakawehea ngā taha e rua ki te 18.
x=\frac{2}{9}y-\frac{5}{9}
Whakareatia \frac{1}{18} ki te 4y-10.
2\left(\frac{2}{9}y-\frac{5}{9}\right)-y=0
Whakakapia te \frac{2y-5}{9} mō te x ki tērā atu whārite, 2x-y=0.
\frac{4}{9}y-\frac{10}{9}-y=0
Whakareatia 2 ki te \frac{2y-5}{9}.
-\frac{5}{9}y-\frac{10}{9}=0
Tāpiri \frac{4y}{9} ki te -y.
-\frac{5}{9}y=\frac{10}{9}
Me tāpiri \frac{10}{9} ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{9}\left(-2\right)-\frac{5}{9}
Whakaurua te -2 mō y ki x=\frac{2}{9}y-\frac{5}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-4-5}{9}
Whakareatia \frac{2}{9} ki te -2.
x=-1
Tāpiri -\frac{5}{9} ki te -\frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=-2
Kua oti te pūnaha te whakatau.
2x+10-4y=-16x
Whakaarohia te whārite tuatahi. Tangohia te 4y mai i ngā taha e rua.
2x+10-4y+16x=0
Me tāpiri te 16x ki ngā taha e rua.
18x+10-4y=0
Pahekotia te 2x me 16x, ka 18x.
18x-4y=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
10y-10x-11y=-12x
Whakaarohia te whārite tuarua. Tangohia te 11y mai i ngā taha e rua.
-y-10x=-12x
Pahekotia te 10y me -11y, ka -y.
-y-10x+12x=0
Me tāpiri te 12x ki ngā taha e rua.
-y+2x=0
Pahekotia te -10x me 12x, ka 2x.
18x-4y=-10,2x-y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}18&-4\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}18&-4\\2&-1\end{matrix}\right))\left(\begin{matrix}18&-4\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}18&-4\\2&-1\end{matrix}\right))\left(\begin{matrix}-10\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}18&-4\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}18&-4\\2&-1\end{matrix}\right))\left(\begin{matrix}-10\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}18&-4\\2&-1\end{matrix}\right))\left(\begin{matrix}-10\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{18\left(-1\right)-\left(-4\times 2\right)}&-\frac{-4}{18\left(-1\right)-\left(-4\times 2\right)}\\-\frac{2}{18\left(-1\right)-\left(-4\times 2\right)}&\frac{18}{18\left(-1\right)-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-10\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&-\frac{2}{5}\\\frac{1}{5}&-\frac{9}{5}\end{matrix}\right)\left(\begin{matrix}-10\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\left(-10\right)\\\frac{1}{5}\left(-10\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=-2
Tangohia ngā huānga poukapa x me y.
2x+10-4y=-16x
Whakaarohia te whārite tuatahi. Tangohia te 4y mai i ngā taha e rua.
2x+10-4y+16x=0
Me tāpiri te 16x ki ngā taha e rua.
18x+10-4y=0
Pahekotia te 2x me 16x, ka 18x.
18x-4y=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
10y-10x-11y=-12x
Whakaarohia te whārite tuarua. Tangohia te 11y mai i ngā taha e rua.
-y-10x=-12x
Pahekotia te 10y me -11y, ka -y.
-y-10x+12x=0
Me tāpiri te 12x ki ngā taha e rua.
-y+2x=0
Pahekotia te -10x me 12x, ka 2x.
18x-4y=-10,2x-y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 18x+2\left(-4\right)y=2\left(-10\right),18\times 2x+18\left(-1\right)y=0
Kia ōrite ai a 18x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 18.
36x-8y=-20,36x-18y=0
Whakarūnātia.
36x-36x-8y+18y=-20
Me tango 36x-18y=0 mai i 36x-8y=-20 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y+18y=-20
Tāpiri 36x ki te -36x. Ka whakakore atu ngā kupu 36x me -36x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
10y=-20
Tāpiri -8y ki te 18y.
y=-2
Whakawehea ngā taha e rua ki te 10.
2x-\left(-2\right)=0
Whakaurua te -2 mō y ki 2x-y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=-2
Me tango 2 mai i ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 2.
x=-1,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}