\left\{ \begin{array} { l } { 2 x + - y = 0 } \\ { x ^ { 2 } + y ^ { 2 } = 9 } \end{array} \right.
Whakaoti mō x, y
x=-\frac{3\sqrt{5}}{5}\approx -1.341640786\text{, }y=-\frac{6\sqrt{5}}{5}\approx -2.683281573
x=\frac{3\sqrt{5}}{5}\approx 1.341640786\text{, }y=\frac{6\sqrt{5}}{5}\approx 2.683281573
Graph
Pātaitai
\left\{ \begin{array} { l } { 2 x + - y = 0 } \\ { x ^ { 2 } + y ^ { 2 } = 9 } \end{array} \right.
Tohaina
Kua tāruatia ki te papatopenga
2x-y=0,y^{2}+x^{2}=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=0
Whakaotia te 2x-y=0 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y
Me tango -y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}y
Whakawehea ngā taha e rua ki te 2.
y^{2}+\left(\frac{1}{2}y\right)^{2}=9
Whakakapia te \frac{1}{2}y mō te x ki tērā atu whārite, y^{2}+x^{2}=9.
y^{2}+\frac{1}{4}y^{2}=9
Pūrua \frac{1}{2}y.
\frac{5}{4}y^{2}=9
Tāpiri y^{2} ki te \frac{1}{4}y^{2}.
\frac{5}{4}y^{2}-9=0
Me tango 9 mai i ngā taha e rua o te whārite.
y=\frac{0±\sqrt{0^{2}-4\times \frac{5}{4}\left(-9\right)}}{2\times \frac{5}{4}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\times \left(\frac{1}{2}\right)^{2} mō a, 1\times 0\times \frac{1}{2}\times 2 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times \frac{5}{4}\left(-9\right)}}{2\times \frac{5}{4}}
Pūrua 1\times 0\times \frac{1}{2}\times 2.
y=\frac{0±\sqrt{-5\left(-9\right)}}{2\times \frac{5}{4}}
Whakareatia -4 ki te 1+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{0±\sqrt{45}}{2\times \frac{5}{4}}
Whakareatia -5 ki te -9.
y=\frac{0±3\sqrt{5}}{2\times \frac{5}{4}}
Tuhia te pūtakerua o te 45.
y=\frac{0±3\sqrt{5}}{\frac{5}{2}}
Whakareatia 2 ki te 1+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{6\sqrt{5}}{5}
Nā, me whakaoti te whārite y=\frac{0±3\sqrt{5}}{\frac{5}{2}} ina he tāpiri te ±.
y=-\frac{6\sqrt{5}}{5}
Nā, me whakaoti te whārite y=\frac{0±3\sqrt{5}}{\frac{5}{2}} ina he tango te ±.
x=\frac{1}{2}\times \frac{6\sqrt{5}}{5}
E rua ngā otinga mō y: \frac{6\sqrt{5}}{5} me -\frac{6\sqrt{5}}{5}. Me whakakapi \frac{6\sqrt{5}}{5} mō y ki te whārite x=\frac{1}{2}y hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=\frac{6\sqrt{5}}{2\times 5}
Whakareatia \frac{1}{2} ki te \frac{6\sqrt{5}}{5}.
x=\frac{1}{2}\left(-\frac{6\sqrt{5}}{5}\right)
Me whakakapi te -\frac{6\sqrt{5}}{5} ināianei mō te y ki te whārite x=\frac{1}{2}y ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\frac{6\sqrt{5}}{2\times 5}
Whakareatia \frac{1}{2} ki te -\frac{6\sqrt{5}}{5}.
x=\frac{6\sqrt{5}}{2\times 5},y=\frac{6\sqrt{5}}{5}\text{ or }x=-\frac{6\sqrt{5}}{2\times 5},y=-\frac{6\sqrt{5}}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}