\left\{ \begin{array} { l } { 2 p + 3 m = 8 } \\ { p + 2 m = 6 } \end{array} \right.
Whakaoti mō p, m
p=-2
m=4
Tohaina
Kua tāruatia ki te papatopenga
2p+3m=8,p+2m=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2p+3m=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te p mā te wehe i te p i te taha mauī o te tohu ōrite.
2p=-3m+8
Me tango 3m mai i ngā taha e rua o te whārite.
p=\frac{1}{2}\left(-3m+8\right)
Whakawehea ngā taha e rua ki te 2.
p=-\frac{3}{2}m+4
Whakareatia \frac{1}{2} ki te -3m+8.
-\frac{3}{2}m+4+2m=6
Whakakapia te -\frac{3m}{2}+4 mō te p ki tērā atu whārite, p+2m=6.
\frac{1}{2}m+4=6
Tāpiri -\frac{3m}{2} ki te 2m.
\frac{1}{2}m=2
Me tango 4 mai i ngā taha e rua o te whārite.
m=4
Me whakarea ngā taha e rua ki te 2.
p=-\frac{3}{2}\times 4+4
Whakaurua te 4 mō m ki p=-\frac{3}{2}m+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō p hāngai tonu.
p=-6+4
Whakareatia -\frac{3}{2} ki te 4.
p=-2
Tāpiri 4 ki te -6.
p=-2,m=4
Kua oti te pūnaha te whakatau.
2p+3m=8,p+2m=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\1&2\end{matrix}\right)\left(\begin{matrix}p\\m\end{matrix}\right)=\left(\begin{matrix}8\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}2&3\\1&2\end{matrix}\right)\left(\begin{matrix}p\\m\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}p\\m\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}p\\m\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}p\\m\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3}&-\frac{3}{2\times 2-3}\\-\frac{1}{2\times 2-3}&\frac{2}{2\times 2-3}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}p\\m\end{matrix}\right)=\left(\begin{matrix}2&-3\\-1&2\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}p\\m\end{matrix}\right)=\left(\begin{matrix}2\times 8-3\times 6\\-8+2\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}p\\m\end{matrix}\right)=\left(\begin{matrix}-2\\4\end{matrix}\right)
Mahia ngā tātaitanga.
p=-2,m=4
Tangohia ngā huānga poukapa p me m.
2p+3m=8,p+2m=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2p+3m=8,2p+2\times 2m=2\times 6
Kia ōrite ai a 2p me p, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2p+3m=8,2p+4m=12
Whakarūnātia.
2p-2p+3m-4m=8-12
Me tango 2p+4m=12 mai i 2p+3m=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3m-4m=8-12
Tāpiri 2p ki te -2p. Ka whakakore atu ngā kupu 2p me -2p, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-m=8-12
Tāpiri 3m ki te -4m.
-m=-4
Tāpiri 8 ki te -12.
m=4
Whakawehea ngā taha e rua ki te -1.
p+2\times 4=6
Whakaurua te 4 mō m ki p+2m=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō p hāngai tonu.
p+8=6
Whakareatia 2 ki te 4.
p=-2
Me tango 8 mai i ngā taha e rua o te whārite.
p=-2,m=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}