\left\{ \begin{array} { l } { 2 p + ( 1 ) q - 3 t = ( 4 ) } \\ { ( - 1 ) p - q + ( 1 ) t = - 3 } \\ { ( - 2 ) p - ( - 6 ) q - 5 t = ( - 7 ) } \end{array} \right.
Whakaoti mō p, q, t
t = \frac{17}{15} = 1\frac{2}{15} \approx 1.133333333
p = \frac{49}{15} = 3\frac{4}{15} \approx 3.266666667
q=\frac{13}{15}\approx 0.866666667
Tohaina
Kua tāruatia ki te papatopenga
-p-q+1t=-3 2p+1q-3t=4 -2p-\left(-6q\right)-5t=-7
Me raupapa anō ngā whārite.
p=-q+t+3
Me whakaoti te -p-q+1t=-3 mō p.
2\left(-q+t+3\right)+1q-3t=4 -2\left(-q+t+3\right)-\left(-6q\right)-5t=-7
Whakakapia te -q+t+3 mō te p i te whārite tuarua me te tuatoru.
q=2-t t=\frac{8}{7}q+\frac{1}{7}
Me whakaoti ēnei whārite mō q me t takitahi.
t=\frac{8}{7}\left(2-t\right)+\frac{1}{7}
Whakakapia te 2-t mō te q i te whārite t=\frac{8}{7}q+\frac{1}{7}.
t=\frac{17}{15}
Me whakaoti te t=\frac{8}{7}\left(2-t\right)+\frac{1}{7} mō t.
q=2-\frac{17}{15}
Whakakapia te \frac{17}{15} mō te t i te whārite q=2-t.
q=\frac{13}{15}
Tātaitia te q i te q=2-\frac{17}{15}.
p=-\frac{13}{15}+\frac{17}{15}+3
Whakakapia te \frac{13}{15} mō te q me te \frac{17}{15} mō t i te whārite p=-q+t+3.
p=\frac{49}{15}
Tātaitia te p i te p=-\frac{13}{15}+\frac{17}{15}+3.
p=\frac{49}{15} q=\frac{13}{15} t=\frac{17}{15}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}