\left\{ \begin{array} { l } { 2 m - 3 n = 130 } \\ { - m + 5 = 4 n } \end{array} \right.
Whakaoti mō m, n
m = \frac{535}{11} = 48\frac{7}{11} \approx 48.636363636
n = -\frac{120}{11} = -10\frac{10}{11} \approx -10.909090909
Tohaina
Kua tāruatia ki te papatopenga
-m+5-4n=0
Whakaarohia te whārite tuarua. Tangohia te 4n mai i ngā taha e rua.
-m-4n=-5
Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2m-3n=130,-m-4n=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2m-3n=130
Kōwhiria tētahi o ngā whārite ka whakaotia mō te m mā te wehe i te m i te taha mauī o te tohu ōrite.
2m=3n+130
Me tāpiri 3n ki ngā taha e rua o te whārite.
m=\frac{1}{2}\left(3n+130\right)
Whakawehea ngā taha e rua ki te 2.
m=\frac{3}{2}n+65
Whakareatia \frac{1}{2} ki te 3n+130.
-\left(\frac{3}{2}n+65\right)-4n=-5
Whakakapia te \frac{3n}{2}+65 mō te m ki tērā atu whārite, -m-4n=-5.
-\frac{3}{2}n-65-4n=-5
Whakareatia -1 ki te \frac{3n}{2}+65.
-\frac{11}{2}n-65=-5
Tāpiri -\frac{3n}{2} ki te -4n.
-\frac{11}{2}n=60
Me tāpiri 65 ki ngā taha e rua o te whārite.
n=-\frac{120}{11}
Whakawehea ngā taha e rua o te whārite ki te -\frac{11}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
m=\frac{3}{2}\left(-\frac{120}{11}\right)+65
Whakaurua te -\frac{120}{11} mō n ki m=\frac{3}{2}n+65. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=-\frac{180}{11}+65
Whakareatia \frac{3}{2} ki te -\frac{120}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=\frac{535}{11}
Tāpiri 65 ki te -\frac{180}{11}.
m=\frac{535}{11},n=-\frac{120}{11}
Kua oti te pūnaha te whakatau.
-m+5-4n=0
Whakaarohia te whārite tuarua. Tangohia te 4n mai i ngā taha e rua.
-m-4n=-5
Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2m-3n=130,-m-4n=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\-1&-4\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}130\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\-1&-4\end{matrix}\right))\left(\begin{matrix}2&-3\\-1&-4\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&-4\end{matrix}\right))\left(\begin{matrix}130\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\-1&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&-4\end{matrix}\right))\left(\begin{matrix}130\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&-4\end{matrix}\right))\left(\begin{matrix}130\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2\left(-4\right)-\left(-3\left(-1\right)\right)}&-\frac{-3}{2\left(-4\right)-\left(-3\left(-1\right)\right)}\\-\frac{-1}{2\left(-4\right)-\left(-3\left(-1\right)\right)}&\frac{2}{2\left(-4\right)-\left(-3\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}130\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}&-\frac{3}{11}\\-\frac{1}{11}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}130\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}\times 130-\frac{3}{11}\left(-5\right)\\-\frac{1}{11}\times 130-\frac{2}{11}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{535}{11}\\-\frac{120}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
m=\frac{535}{11},n=-\frac{120}{11}
Tangohia ngā huānga poukapa m me n.
-m+5-4n=0
Whakaarohia te whārite tuarua. Tangohia te 4n mai i ngā taha e rua.
-m-4n=-5
Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2m-3n=130,-m-4n=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2m-\left(-3n\right)=-130,2\left(-1\right)m+2\left(-4\right)n=2\left(-5\right)
Kia ōrite ai a 2m me -m, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-2m+3n=-130,-2m-8n=-10
Whakarūnātia.
-2m+2m+3n+8n=-130+10
Me tango -2m-8n=-10 mai i -2m+3n=-130 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3n+8n=-130+10
Tāpiri -2m ki te 2m. Ka whakakore atu ngā kupu -2m me 2m, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11n=-130+10
Tāpiri 3n ki te 8n.
11n=-120
Tāpiri -130 ki te 10.
n=-\frac{120}{11}
Whakawehea ngā taha e rua ki te 11.
-m-4\left(-\frac{120}{11}\right)=-5
Whakaurua te -\frac{120}{11} mō n ki -m-4n=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
-m+\frac{480}{11}=-5
Whakareatia -4 ki te -\frac{120}{11}.
-m=-\frac{535}{11}
Me tango \frac{480}{11} mai i ngā taha e rua o te whārite.
m=\frac{535}{11}
Whakawehea ngā taha e rua ki te -1.
m=\frac{535}{11},n=-\frac{120}{11}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}