\left\{ \begin{array} { l } { 2 m + 3 n = 22 } \\ { m - 2 n = 6 } \end{array} \right.
Whakaoti mō m, n
m = \frac{62}{7} = 8\frac{6}{7} \approx 8.857142857
n = \frac{10}{7} = 1\frac{3}{7} \approx 1.428571429
Tohaina
Kua tāruatia ki te papatopenga
2m+3n=22,m-2n=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2m+3n=22
Kōwhiria tētahi o ngā whārite ka whakaotia mō te m mā te wehe i te m i te taha mauī o te tohu ōrite.
2m=-3n+22
Me tango 3n mai i ngā taha e rua o te whārite.
m=\frac{1}{2}\left(-3n+22\right)
Whakawehea ngā taha e rua ki te 2.
m=-\frac{3}{2}n+11
Whakareatia \frac{1}{2} ki te -3n+22.
-\frac{3}{2}n+11-2n=6
Whakakapia te -\frac{3n}{2}+11 mō te m ki tērā atu whārite, m-2n=6.
-\frac{7}{2}n+11=6
Tāpiri -\frac{3n}{2} ki te -2n.
-\frac{7}{2}n=-5
Me tango 11 mai i ngā taha e rua o te whārite.
n=\frac{10}{7}
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
m=-\frac{3}{2}\times \frac{10}{7}+11
Whakaurua te \frac{10}{7} mō n ki m=-\frac{3}{2}n+11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=-\frac{15}{7}+11
Whakareatia -\frac{3}{2} ki te \frac{10}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=\frac{62}{7}
Tāpiri 11 ki te -\frac{15}{7}.
m=\frac{62}{7},n=\frac{10}{7}
Kua oti te pūnaha te whakatau.
2m+3n=22,m-2n=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\1&-2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}22\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}2&3\\1&-2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}22\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}22\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}22\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-3}&-\frac{3}{2\left(-2\right)-3}\\-\frac{1}{2\left(-2\right)-3}&\frac{2}{2\left(-2\right)-3}\end{matrix}\right)\left(\begin{matrix}22\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{3}{7}\\\frac{1}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}22\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 22+\frac{3}{7}\times 6\\\frac{1}{7}\times 22-\frac{2}{7}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{62}{7}\\\frac{10}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
m=\frac{62}{7},n=\frac{10}{7}
Tangohia ngā huānga poukapa m me n.
2m+3n=22,m-2n=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2m+3n=22,2m+2\left(-2\right)n=2\times 6
Kia ōrite ai a 2m me m, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2m+3n=22,2m-4n=12
Whakarūnātia.
2m-2m+3n+4n=22-12
Me tango 2m-4n=12 mai i 2m+3n=22 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3n+4n=22-12
Tāpiri 2m ki te -2m. Ka whakakore atu ngā kupu 2m me -2m, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7n=22-12
Tāpiri 3n ki te 4n.
7n=10
Tāpiri 22 ki te -12.
n=\frac{10}{7}
Whakawehea ngā taha e rua ki te 7.
m-2\times \frac{10}{7}=6
Whakaurua te \frac{10}{7} mō n ki m-2n=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m-\frac{20}{7}=6
Whakareatia -2 ki te \frac{10}{7}.
m=\frac{62}{7}
Me tāpiri \frac{20}{7} ki ngā taha e rua o te whārite.
m=\frac{62}{7},n=\frac{10}{7}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}