\left\{ \begin{array} { l } { 2 m + 3 n = 1 } \\ { 7 m + 3 n = 6 } \end{array} \right.
Whakaoti mō m, n
m=1
n=-\frac{1}{3}\approx -0.333333333
Tohaina
Kua tāruatia ki te papatopenga
2m+3n=1,7m+3n=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2m+3n=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te m mā te wehe i te m i te taha mauī o te tohu ōrite.
2m=-3n+1
Me tango 3n mai i ngā taha e rua o te whārite.
m=\frac{1}{2}\left(-3n+1\right)
Whakawehea ngā taha e rua ki te 2.
m=-\frac{3}{2}n+\frac{1}{2}
Whakareatia \frac{1}{2} ki te -3n+1.
7\left(-\frac{3}{2}n+\frac{1}{2}\right)+3n=6
Whakakapia te \frac{-3n+1}{2} mō te m ki tērā atu whārite, 7m+3n=6.
-\frac{21}{2}n+\frac{7}{2}+3n=6
Whakareatia 7 ki te \frac{-3n+1}{2}.
-\frac{15}{2}n+\frac{7}{2}=6
Tāpiri -\frac{21n}{2} ki te 3n.
-\frac{15}{2}n=\frac{5}{2}
Me tango \frac{7}{2} mai i ngā taha e rua o te whārite.
n=-\frac{1}{3}
Whakawehea ngā taha e rua o te whārite ki te -\frac{15}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
m=-\frac{3}{2}\left(-\frac{1}{3}\right)+\frac{1}{2}
Whakaurua te -\frac{1}{3} mō n ki m=-\frac{3}{2}n+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=\frac{1+1}{2}
Whakareatia -\frac{3}{2} ki te -\frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=1
Tāpiri \frac{1}{2} ki te \frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=1,n=-\frac{1}{3}
Kua oti te pūnaha te whakatau.
2m+3n=1,7m+3n=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\7&3\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\7&3\end{matrix}\right))\left(\begin{matrix}2&3\\7&3\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&3\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\7&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&3\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&3\end{matrix}\right))\left(\begin{matrix}1\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3\times 7}&-\frac{3}{2\times 3-3\times 7}\\-\frac{7}{2\times 3-3\times 7}&\frac{2}{2\times 3-3\times 7}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{1}{5}\\\frac{7}{15}&-\frac{2}{15}\end{matrix}\right)\left(\begin{matrix}1\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}+\frac{1}{5}\times 6\\\frac{7}{15}-\frac{2}{15}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\-\frac{1}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
m=1,n=-\frac{1}{3}
Tangohia ngā huānga poukapa m me n.
2m+3n=1,7m+3n=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2m-7m+3n-3n=1-6
Me tango 7m+3n=6 mai i 2m+3n=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2m-7m=1-6
Tāpiri 3n ki te -3n. Ka whakakore atu ngā kupu 3n me -3n, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5m=1-6
Tāpiri 2m ki te -7m.
-5m=-5
Tāpiri 1 ki te -6.
m=1
Whakawehea ngā taha e rua ki te -5.
7+3n=6
Whakaurua te 1 mō m ki 7m+3n=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō n hāngai tonu.
3n=-1
Me tango 7 mai i ngā taha e rua o te whārite.
n=-\frac{1}{3}
Whakawehea ngā taha e rua ki te 3.
m=1,n=-\frac{1}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}