\left\{ \begin{array} { l } { 2 m + 3 n = 1 } \\ { \frac { 15 } { 9 } m - 2 n = 1 } \end{array} \right.
Whakaoti mō m, n
m=\frac{5}{9}\approx 0.555555556
n=-\frac{1}{27}\approx -0.037037037
Tohaina
Kua tāruatia ki te papatopenga
2m+3n=1,\frac{5}{3}m-2n=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2m+3n=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te m mā te wehe i te m i te taha mauī o te tohu ōrite.
2m=-3n+1
Me tango 3n mai i ngā taha e rua o te whārite.
m=\frac{1}{2}\left(-3n+1\right)
Whakawehea ngā taha e rua ki te 2.
m=-\frac{3}{2}n+\frac{1}{2}
Whakareatia \frac{1}{2} ki te -3n+1.
\frac{5}{3}\left(-\frac{3}{2}n+\frac{1}{2}\right)-2n=1
Whakakapia te \frac{-3n+1}{2} mō te m ki tērā atu whārite, \frac{5}{3}m-2n=1.
-\frac{5}{2}n+\frac{5}{6}-2n=1
Whakareatia \frac{5}{3} ki te \frac{-3n+1}{2}.
-\frac{9}{2}n+\frac{5}{6}=1
Tāpiri -\frac{5n}{2} ki te -2n.
-\frac{9}{2}n=\frac{1}{6}
Me tango \frac{5}{6} mai i ngā taha e rua o te whārite.
n=-\frac{1}{27}
Whakawehea ngā taha e rua o te whārite ki te -\frac{9}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
m=-\frac{3}{2}\left(-\frac{1}{27}\right)+\frac{1}{2}
Whakaurua te -\frac{1}{27} mō n ki m=-\frac{3}{2}n+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=\frac{1}{18}+\frac{1}{2}
Whakareatia -\frac{3}{2} ki te -\frac{1}{27} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=\frac{5}{9}
Tāpiri \frac{1}{2} ki te \frac{1}{18} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=\frac{5}{9},n=-\frac{1}{27}
Kua oti te pūnaha te whakatau.
2m+3n=1,\frac{5}{3}m-2n=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\\frac{5}{3}&-2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\\frac{5}{3}&-2\end{matrix}\right))\left(\begin{matrix}2&3\\\frac{5}{3}&-2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\\frac{5}{3}&-2\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\\frac{5}{3}&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\\frac{5}{3}&-2\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\\frac{5}{3}&-2\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-3\times \frac{5}{3}}&-\frac{3}{2\left(-2\right)-3\times \frac{5}{3}}\\-\frac{\frac{5}{3}}{2\left(-2\right)-3\times \frac{5}{3}}&\frac{2}{2\left(-2\right)-3\times \frac{5}{3}}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}&\frac{1}{3}\\\frac{5}{27}&-\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}+\frac{1}{3}\\\frac{5}{27}-\frac{2}{9}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}\\-\frac{1}{27}\end{matrix}\right)
Mahia ngā tātaitanga.
m=\frac{5}{9},n=-\frac{1}{27}
Tangohia ngā huānga poukapa m me n.
2m+3n=1,\frac{5}{3}m-2n=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{5}{3}\times 2m+\frac{5}{3}\times 3n=\frac{5}{3},2\times \frac{5}{3}m+2\left(-2\right)n=2
Kia ōrite ai a 2m me \frac{5m}{3}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{5}{3} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
\frac{10}{3}m+5n=\frac{5}{3},\frac{10}{3}m-4n=2
Whakarūnātia.
\frac{10}{3}m-\frac{10}{3}m+5n+4n=\frac{5}{3}-2
Me tango \frac{10}{3}m-4n=2 mai i \frac{10}{3}m+5n=\frac{5}{3} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5n+4n=\frac{5}{3}-2
Tāpiri \frac{10m}{3} ki te -\frac{10m}{3}. Ka whakakore atu ngā kupu \frac{10m}{3} me -\frac{10m}{3}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
9n=\frac{5}{3}-2
Tāpiri 5n ki te 4n.
9n=-\frac{1}{3}
Tāpiri \frac{5}{3} ki te -2.
n=-\frac{1}{27}
Whakawehea ngā taha e rua ki te 9.
\frac{5}{3}m-2\left(-\frac{1}{27}\right)=1
Whakaurua te -\frac{1}{27} mō n ki \frac{5}{3}m-2n=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
\frac{5}{3}m+\frac{2}{27}=1
Whakareatia -2 ki te -\frac{1}{27}.
\frac{5}{3}m=\frac{25}{27}
Me tango \frac{2}{27} mai i ngā taha e rua o te whārite.
m=\frac{5}{9}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
m=\frac{5}{9},n=-\frac{1}{27}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}